The Measure of Complexity in Charged Celestial Bodies in $f(R,T,R_{mu u}T^{mu u})$ Gravity


Abstract in English

In this paper, we investigate irregularities in a cylindrical self-gravitating system which contains the properties of an imperfect matter and electromagnetic field. For $f(R,T,Q)$ theory, in which $R$ represents the Ricci scalar and $T$ shows the trace of matter stress-energy tensor while $Qequiv R_{gammadelta}T^{gammadelta}$, the field equations containing electric charge, mass functions and Darmois junction conditions at the hypersurface are examined. We have adopted new definition of complexity introduced by Herrera cite{herrera2018new}, generalized it for the static charged cylindrically symmetric case in $f(R,T,Q)$ theory by performing a detailed analysis on the orthogonal splitting of the Riemann curvature tensor. One of the effective scalars, $Y_{TF}$, has been recognized as a complexity factor. This factor is comprised of certain physical components of the fluid such as irregularity in energy density, locally pressure anisotropy and electric charge (arranged in a specific way). In addition, the effects of extra curvature terms of modified gravity are examined by making the relations among the complexity factor, Weyl scalar and Tolman mass.

Download