Do you want to publish a course? Click here

Filtering before Iteratively Referring for Knowledge-Grounded Response Selection in Retrieval-Based Chatbots

278   0   0.0 ( 0 )
 Added by Jia-Chen Gu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The challenges of building knowledge-grounded retrieval-based chatbots lie in how to ground a conversation on its background knowledge and how to match response candidates with both context and knowledge simultaneously. This paper proposes a method named Filtering before Iteratively REferring (FIRE) for this task. In this method, a context filter and a knowledge filter are first built, which derive knowledge-aware context representations and context-aware knowledge representations respectively by global and bidirectional attention. Besides, the entries irrelevant to the conversation are discarded by the knowledge filter. After that, iteratively referring is performed between context and response representations as well as between knowledge and response representations, in order to collect deep matching features for scoring response candidates. Experimental results show that FIRE outperforms previous methods by margins larger than 2.8% and 4.1% on the PERSONA-CHAT dataset with original and revised personas respectively, and margins larger than 3.1% on the CMU_DoG dataset in terms of top-1 accuracy. We also show that FIRE is more interpretable by visualizing the knowledge grounding process.



rate research

Read More

Grounding human-machine conversation in a document is an effective way to improve the performance of retrieval-based chatbots. However, only a part of the document content may be relevant to help select the appropriate response at a round. It is thus crucial to select the part of document content relevant to the current conversation context. In this paper, we propose a document content selection network (CSN) to perform explicit selection of relevant document contents, and filter out the irrelevant parts. We show in experiments on two public document-grounded conversation datasets that CSN can effectively help select the relevant document contents to the conversation context, and it produces better results than the state-of-the-art approaches. Our code and datasets are available at https://github.com/DaoD/CSN.
288 - Jia-Chen Gu , Tianda Li , Quan Liu 2020
In this paper, we study the problem of employing pre-trained language models for multi-turn response selection in retrieval-based chatbots. A new model, named Speaker-Aware BERT (SA-BERT), is proposed in order to make the model aware of the speaker change information, which is an important and intrinsic property of multi-turn dialogues. Furthermore, a speaker-aware disentanglement strategy is proposed to tackle the entangled dialogues. This strategy selects a small number of most important utterances as the filtered context according to the speakers information in them. Finally, domain adaptation is performed to incorporate the in-domain knowledge into pre-trained language models. Experiments on five public datasets show that our proposed model outperforms the present models on all metrics by large margins and achieves new state-of-the-art performances for multi-turn response selection.
250 - Chao Xiong , Che Liu , Zijun Xu 2020
Recently, open domain multi-turn chatbots have attracted much interest from lots of researchers in both academia and industry. The dominant retrieval-based methods use context-response matching mechanisms for multi-turn response selection. Specifically, the state-of-the-art methods perform the context-response matching by word or segment similarity. However, these models lack a full exploitation of the sentence-level semantic information, and make simple mistakes that humans can easily avoid. In this work, we propose a matching network, called sequential sentence matching network (S2M), to use the sentence-level semantic information to address the problem. Firstly and most importantly, we find that by using the sentence-level semantic information, the network successfully addresses the problem and gets a significant improvement on matching, resulting in a state-of-the-art performance. Furthermore, we integrate the sentence matching we introduced here and the usual word similarity matching reported in the current literature, to match at different semantic levels. Experiments on three public data sets show that such integration further improves the model performance.
This paper proposes an utterance-to-utterance interactive matching network (U2U-IMN) for multi-turn response selection in retrieval-based chatbots. Different from previous methods following context-to-response matching or utterance-to-response matching frameworks, this model treats both contexts and responses as sequences of utterances when calculating the matching degrees between them. For a context-response pair, the U2U-IMN model first encodes each utterance separately using recurrent and self-attention layers. Then, a global and bidirectional interaction between the context and the response is conducted using the attention mechanism to collect the matching information between them. The distances between context and response utterances are employed as a prior component when calculating the attention weights. Finally, sentence-level aggregation and context-response-level aggregation are executed in turn to obtain the feature vector for matching degree prediction. Experiments on four public datasets showed that our proposed method outperformed baseline methods on all metrics, achieving a new state-of-the-art performance and demonstrating compatibility across domains for multi-turn response selection.
Persona can function as the prior knowledge for maintaining the consistency of dialogue systems. Most of previous studies adopted the self persona in dialogue whose response was about to be selected from a set of candidates or directly generated, but few have noticed the role of partner in dialogue. This paper makes an attempt to thoroughly explore the impact of utilizing personas that describe either self or partner speakers on the task of response selection in retrieval-based chatbots. Four persona fusion strategies are designed, which assume personas interact with contexts or responses in different ways. These strategies are implemented into three representative models for response selection, which are based on the Hierarchical Recurrent Encoder (HRE), Interactive Matching Network (IMN) and Bidirectional Encoder Representations from Transformers (BERT) respectively. Empirical studies on the Persona-Chat dataset show that the partner personas neglected in previous studies can improve the accuracy of response selection in the IMN- and BERT-based models. Besides, our BERT-based model implemented with the context-response-aware persona fusion strategy outperforms previous methods by margins larger than 2.7% on original personas and 4.6% on revised personas in terms of hits@1 (top-1 accuracy), achieving a new state-of-the-art performance on the Persona-Chat dataset.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا