Tropical Fukaya Algebras


Abstract in English

We introduce a tropical version of the Fukaya algebra of a Lagrangian submanifold and use it to show that tropical Lagrangian tori are weakly unobstructed. Tropical graphs arise as large-scale behavior of pseudoholomorphic disks under a multiple cut operation on a symplectic manifold that produces a collection of cut spaces each containing relative normal crossing divisors, following works of Ionel and Brett Parker. Given a Lagrangian submanifold in the complement of the relative divisors in one of the cut spaces, the structure maps of the broken Fukaya algebra count broken disks associated to rigid tropical graphs. We introduce a further degeneration of the matching conditions (similar in spirit to Bourgeois version of symplectic field theory) which results in a tropical Fukaya algebra whose structure maps are, in good cases, sums of products over vertices of tropical graphs. We show the tropical Fukaya algebra is homotopy equivalent to the original Fukaya algebra. In the case of toric Lagrangians contained in a toric component of the degeneration, an invariance argument implies the existence of projective Maurer-Cartan solutions.

Download