Do you want to publish a course? Click here

A nested hybridizable discontinuous Galerkin method for computing second-harmonic generation in three-dimensional metallic nanostructures

196   0   0.0 ( 0 )
 Added by Ferran Vidal-Codina
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we develop a nested hybridizable discontinuous Galerkin (HDG) method to numerically solve the Maxwells equations coupled with the hydrodynamic model for the conduction-band electrons in metals. By means of a static condensation to eliminate the degrees of freedom of the approximate solution defined in the elements, the HDG method yields a linear system in terms of the degrees of freedom of the approximate trace defined on the element boundaries. Furthermore, we propose to reorder these degrees of freedom so that the linear system accommodates a second static condensation to eliminate a large portion of the degrees of freedom of the approximate trace, thereby yielding a much smaller linear system. For the particular metallic structures considered in this paper, the resulting linear system obtained by means of nested static condensations is a block tridiagonal system, which can be solved efficiently. We apply the nested HDG method to compute the second harmonic generation (SHG) on a triangular coaxial periodic nanogap structure. This nonlinear optics phenomenon features rapid field variations and extreme boundary-layer structures that span multiple length scales. Numerical results show that the ability to identify structures which exhibit resonances at $omega$ and $2omega$ is paramount to excite the second harmonic response.



rate research

Read More

The interaction of light with metallic nanostructures produces a collective excitation of electrons at the metal surface, also known as surface plasmons. These collective excitations lead to resonances that enable the confinement of light in deep-subwavelength regions, thereby leading to large near-field enhancements. The simulation of plasmon resonances presents notable challenges. From the modeling perspective, the realistic behavior of conduction-band electrons in metallic nanostructures is not captured by Maxwells equations, thus requiring additional modeling. From the simulation perspective, the disparity in length scales stemming from the extreme field localization demands efficient and accurate numerical methods. In this paper, we develop the hybridizable discontinuous Galerkin (HDG) method to solve Maxwells equations augmented with the hydrodynamic model for the conduction-band electrons in noble metals. This method enables the efficient simulation of plasmonic nanostructures while accounting for the nonlocal interactions between electrons and the incident light. We introduce a novel postprocessing scheme to recover superconvergent solutions and demonstrate the convergence of the proposed HDG method for the simulation of a 2D gold nanowire and a 3D periodic annular nanogap structure. The results of the hydrodynamic model are compared to those of a simplified local response model, showing that differences between them can be significant at the nanoscale.
We present a parallel computing strategy for a hybridizable discontinuous Galerkin (HDG) nested geometric multigrid (GMG) solver. Parallel GMG solvers require a combination of coarse-grain and fine-grain parallelism to improve time to solution performance. In this work we focus on fine-grain parallelism. We use Intels second generation Xeon Phi (Knights Landing) many-core processor. The GMG method achieves ideal convergence rates of $0.2$ or less, for high polynomial orders. A matrix free (assembly free) technique is exploited to save considerable memory usage and increase arithmetic intensity. HDG enables static condensation, and due to the discontinuous nature of the discretization, we developed a matrix vector multiply routine that does not require any costly synchronizations or barriers. Our algorithm is able to attain 80% of peak bandwidth performance for higher order polynomials. This is possible due to the data locality inherent in the HDG method. Very high performance is realized for high order schemes, due to good arithmetic intensity, which declines as the order is reduced.
The high-order hybridizable discontinuous Galerkin (HDG) method combining with an implicit iterative scheme is used to find the steady-state solution of the Boltzmann equation with full collision integral on two-dimensional triangular meshes. The velocity distribution function and its trace are approximated in the piecewise polynomial space of degree up to 4. The fast spectral method (FSM) is incorporated into the DG discretization to evaluate the collision operator. Specific polynomial approximation is proposed for the collision term to reduce the computational cost. The proposed scheme is proved to be accurate and efficient.
The mass flow rate of Poiseuille flow of rarefied gas through long ducts of two-dimensional cross-sections with arbitrary shape are critical in the pore-network modeling of gas transport in porous media. In this paper, for the first time, the high-order hybridizable discontinuous Galerkin (HDG) method is used to find the steady-state solution of the linearized Bhatnagar-Gross-Krook equation on two-dimensional triangular meshes. The velocity distribution function and its traces are approximated in the piecewise polynomial space (of degree up to 4) on the triangular meshes and the mesh skeletons, respectively. By employing a numerical flux that is derived from the first-order upwind scheme and imposing its continuity on the mesh skeletons, global systems for unknown traces are obtained with a few coupled degrees of freedom. To achieve fast convergence to the steady-state solution, a diffusion-type equation for flow velocity that is asymptotic-preserving into the fluid dynamic limit is solved by the HDG simultaneously, on the same meshes. The proposed HDG-synthetic iterative scheme is proved to be accurate and efficient. Specifically, for flows in the near-continuum regime, numerical simulations have shown that, to achieve the same level of accuracy, our scheme could be faster than the conventional iterative scheme by two orders of magnitude, while it is faster than the synthetic iterative scheme based on the finite difference discretization in the spatial space by one order of magnitude. The HDG-synthetic iterative scheme is ready to be extended to simulate rarefied gas mixtures and the Boltzmann collision operator.
Some properties of a Local discontinuous Galerkin (LDG) algorithm are demonstrated for the problem of evaluting a second derivative $g = f_{xx}$ for a given $f$. (This is a somewhat unusual problem, but it is useful for understanding the initial transient response of an algorithm for diffusion equations.) LDG uses an auxiliary variable to break this up into two first order equations and then applies techniques by analogy to DG algorithms for advection algorithms. This introduces an asymmetry into the solution that depends on the choice of upwind directions for these two first order equations. When using piecewise linear basis functions, this LDG solution $g_h$ is shown not to converge in an $L_2$ norm because the slopes in each cell diverge. However, when LDG is used in a time-dependent diffusion problem, this error in the second derivative term is transient and rapidly decays away, so that the overall error is bounded. I.e., the LDG approximation $f_h(x,t)$ for a diffusion equation $partial f / partial t = f_{xx}$ converges to the proper solution (as has been shown before), even though the initial rate of change $partial f_h / partial t$ does not converge. We also show results from the Recovery discontinuous Galerkin (RDG) approach, which gives symmetric solutions that can have higher rates of convergence for a stencil that couples the same number of cells.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا