No Arabic abstract
We analyze the optical properties of Radio-Loud quasars along the Main Sequence (MS) of quasars. A sample of 355 quasars selected on the basis of radio detection was obtained by cross-matching the FIRST survey at 20cm and the SDSS DR12 spectroscopic survey. We consider the nature of powerful emission at the high-FeII end of the MS. At variance with the classical radio-loud sources which are located in the Population B domain of the MS optical plane, we found evidence indicating a thermal origin of the radio emission of the highly accreting quasars of Population A.
Following the established view of the AGNs inner workings, an AGN is radio-loud (RL) if associated with relativistic ejections emitting a radio synchrotron spectrum (i.e., a jetted AGN). If large samples of optically-selected quasars are considered, AGNs are identified as RL if their Kellermanns radio loudness ratio RK > 10. Our aims are to characterize the optical properties of different classes based on radio-loudness within the quasar main sequence (MS) and to test whether the condition RK > 10 is sufficient for the identification of RL AGNs. A sample of 355 quasars was selected by cross-correlating the FIRST survey with the SDSS DR14 quasar catalog. We classified the optical spectra according to their spectral types along the quasars MS. For each spectral type, we distinguished compact and extended morphology, and three classes of radio-loudness: detected (specific flux ratio in the g band and at 1.4GHz, RK < 10, RD), intermediate (10 < RK < 70, RI), and radio loud (RK > 70). The analysis revealed systematic differences between RD, RI, and RL in each spectral type along the MS. We show that spectral bins that contain the extreme Population A sources have radio power compatible with emission by mechanisms ultimately due to star formation processes. RL sources of Population B are characteristically jetted. Their broad H-beta profiles can be interpreted as due to a binary broad-line region. We suggest that RL Population B sources should be preferential targets for the search of black hole binaries, and present a sample of binary black hole AGN candidates. The validity of the Kellermanns criterion may be dependent on the source location along the quasar MS. The consideration of the MS trends allowed to distinguish between sources whose radio emission mechanisms is jetted from the ones where the mechanism is likely to be fundamentally different.
We discuss 6 GHz JVLA observations covering a volume-limited sample of 178 low redshift ($0.2 < z < 0.3$) optically selected QSOs. Our 176 radio detections fall into two clear categories: (1) About $20$% are radio-loud QSOs (RLQs) having spectral luminosities $L_6 gtrsim 10^{,23.2} mathrm{~W~Hz}^{-1}$ primarily generated in the active galactic nucleus (AGN) responsible for the excess optical luminosity that defines a emph{bona fide} QSO. (2) The radio-quiet QSOs (RQQs) have $10^{,21} lesssim L_6 lesssim 10^{,23.2} mathrm{~W~Hz}^{-1}$ and radio sizes $lesssim 10 mathrm{~kpc}$, and we suggest that the bulk of their radio emission is powered by star formation in their host galaxies. Radio silent QSOs ($L_6 lesssim 10^{,21} mathrm{~W~Hz}^{-1}$) are rare, so most RQQ host galaxies form stars faster than the Milky Way; they are not red and dead ellipticals. Earlier radio observations did not have the luminosity sensitivity $L_6 lesssim 10^{,21} mathrm{~W~Hz}^{-1}$ needed to distinguish between such RLQs and RQQs. Strong, generally double-sided, radio emission spanning $gg 10 mathrm{~kpc}$ was found associated with 13 of the 18 RLQ cores having peak flux densities $S_mathrm{p} > 5 mathrm{~mJy~beam}^{-1}$ ($log(L) gtrsim 24$). The radio luminosity function of optically selected QSOs and the extended radio emission associated with RLQs are both inconsistent with simple unified models that invoke relativistic beaming from randomly oriented QSOs to explain the difference between RLQs and RQQs. Some intrinsic property of the AGNs or their host galaxies must also determine whether or not a QSO appears radio loud.
We have made radio observations of 87 optically selected quasars at 5 GHz with the VLA in order to measure the radio power for these objects and hence determine how the fraction of radio-loud quasars varies with redshift and optical luminosity. The sample has been selected from the recently completed Edinburgh Quasar Survey and covers a redshift range of 0.3 < z < 1.5 and an optical absolute magnitude range of -26.5 < M_{B} < -23.5 (h, q_{0} = 1/2). We have also matched up other existing surveys with the FIRST and NVSS radio catalogues and combined these data so that the optical luminosity-redshift plane is now far better sampled than previously. We have fitted a model to the probability of a quasar being radio-loud as a function of absolute magnitude and redshift and from this model infer the radio-loud and radio-quiet optical luminosity functions. The radio-loud optical luminosity function is featureless and flatter than the radio-quiet one. It evolves at a marginally slower rate if quasars evolve by density evolution, but the difference in the rate of evolutions of the two different classes is much less than was previously thought. We show, using Monte-Carlo simulations, that the observed difference in the shape of the optical luminosity functions can be partly accounted for by Doppler boosting of the optical continuum of the radio-loud quasars and explain how this can be tested in the future.
We report spectral, imaging, and variability results from four new XMM-Newton observations and two new Chandra observations of high-redshift (z > 4) radio-loud quasars (RLQs). Our targets span lower, and more representative, values of radio loudness than those of past samples of high-redshift RLQs studied in the X-ray regime. Our spectral analyses show power-law X-ray continua with a mean photon index, Gamma =1.74 +/- 0.11, that is consistent with measurements of lower redshift RLQs. These continua are likely dominated by jet-linked X-ray emission, and they follow the expected anti-correlation between photon index and radio loudness. We find no evidence of iron Kalpha ~ emission lines or Compton-reflection continua. Our data also constrain intrinsic X-ray absorption in these RLQs. We find evidence for significant absorption (N_H ~ 10^22 cm^-2) in one RLQ of our sample (SDSS J0011+1446); the incidence of X-ray absorption in our sample appears plausibly consistent with that for high-redshift RLQs that have higher values of radio loudness. In the Chandra observation of PMN J221-2719 we detect apparent extended (~ 14 kpc) X-ray emission that is most likely due to a jet; the X-ray luminosity of this putative jet is ~2% that of the core. The analysis of a 4.9 GHz VLA image of PMN J221-2719 reveals a structure that matches the X-ray extension found in this source. We also find evidence for long-term (450-460 days) X-ray variability by 80-100% in two of our targets.
We present a study of a sample of 223 radio-loud quasars (up to redshift $<$0.3) in order to investigate their spectral properties. Twenty-six of these radio-loud quasars are identified as Flat Spectrum Radio Quasars (FSRQs) and fifty-four are identified as Steep Spectrum Radio Quasars (SSRQs) based on their radio spectral index. We study the [O III] line properties of these quasars to investigate the origin and properties of blue wings (shift of the profile towards lower wavelengths) and blue outliers (shift of the whole spectroscopic feature). Most of the quasars show blue wings with velocities up to 420 km $s^{-1}$. We find that around 17% of the quasars show outliers with velocities spanning 419 to -315 km $s^{-1}$. Finally, we revisit the $it M_{rm BH} - sigma$ relation of our sample using [S II]$lambda$6716, 6731 and [O III] linewidths as surrogates for stellar velocity dispersions, $sigma$, to investigate their location on the $it M_{rm BH} - sigma$ relation for quiescent galaxies. Due to the strong blending of [S II] with $rm H_{alpha}$, we could estimate $sigma_{[rm SII]}$ of only 123 quasars. We find that the radio-loud quasars do not show a relationship between $it M_{rm BH}$ and $sigma_{rm [SII]/[OIII]}$ up to a redshift of 0.3, although they cluster around the local relation. We find an overall offset of 0.12$pm$0.05 dex of our sample of radio-loud quasars from the $it M_{rm BH} - sigma$ relation of quiescent galaxies. Quasars in our highest redshift bin (z=0.25-0.3) show a deviation of $sim$0.33 $pm$ 0.06 dex with respect to the local relation.