Do you want to publish a course? Click here

Efficient tests for bio-equivalence in functional data

59   0   0.0 ( 0 )
 Added by Holger Dette
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We study the problem of testing the equivalence of functional parameters (such as the mean or variance function) in the two sample functional data problem. In contrast to previous work, which reduces the functional problem to a multiple testing problem for the equivalence of scalar data by comparing the functions at each point, our approach is based on an estimate of a distance measuring the maximum deviation between the two functional parameters. Equivalence is claimed if the estimate for the maximum deviation does not exceed a given threshold. A bootstrap procedure is proposed to obtain quantiles for the distribution of the test statistic and consistency of the corresponding test is proved in the large sample scenario. As the methods proposed here avoid the use of the intersection-union principle they are less conservative and more powerful than the currently available methodology.



rate research

Read More

We consider noisy non-synchronous discrete observations of a continuous semimartingale with random volatility. Functional stable central limit theorems are established under high-frequency asymptotics in three setups: one-dimensional for the spectral estimator of integrated volatility, from two-dimensional asynchronous observations for a bivariate spectral covolatility estimator and multivariate for a local method of moments. The results demonstrate that local adaptivity and smoothing noise dilution in the Fourier domain facilitate substantial efficiency gains compared to previous approaches. In particular, the derived asymptotic variances coincide with the benchmarks of semiparametric Cramer-Rao lower bounds and the considered estimators are thus asymptotically efficient in idealized sub-experiments. Feasible central limit theorems allowing for confidence are provided.
110 - Mikhail Langovoy 2007
We consider testing statistical hypotheses about densities of signals in deconvolution models. A new approach to this problem is proposed. We constructed score tests for the deconvolution with the known noise density and efficient score tests for the case of unknown density. The tests are incorporated with model selection rules to choose reasonable model dimensions automatically by the data. Consistency of the tests is proved.
Functional data analysis on nonlinear manifolds has drawn recent interest. Sphere-valued functional data, which are encountered for example as movement trajectories on the surface of the earth, are an important special case. We consider an intrinsic principal component analysis for smooth Riemannian manifold-valued functional data and study its asymptotic properties. Riemannian functional principal component analysis (RFPCA) is carried out by first mapping the manifold-valued data through Riemannian logarithm maps to tangent spaces around the time-varying Frechet mean function, and then performing a classical multivariate functional principal component analysis on the linear tangent spaces. Representations of the Riemannian manifold-valued functions and the eigenfunctions on the original manifold are then obtained with exponential maps. The tangent-space approximation through functional principal component analysis is shown to be well-behaved in terms of controlling the residual variation if the Riemannian manifold has nonnegative curvature. Specifically, we derive a central limit theorem for the mean function, as well as root-$n$ uniform convergence rates for other model components, including the covariance function, eigenfunctions, and functional principal component scores. Our applications include a novel framework for the analysis of longitudinal compositional data, achieved by mapping longitudinal compositional data to trajectories on the sphere, illustrated with longitudinal fruit fly behavior patterns. RFPCA is shown to be superior in terms of trajectory recovery in comparison to an unrestricted functional principal component analysis in applications and simulations and is also found to produce principal component scores that are better predictors for classification compared to traditional functional functional principal component scores.
192 - Yehua Li , Tailen Hsing 2012
We consider nonparametric estimation of the mean and covariance functions for functional/longitudinal data. Strong uniform convergence rates are developed for estimators that are local-linear smoothers. Our results are obtained in a unified framework in which the number of observations within each curve/cluster can be of any rate relative to the sample size. We show that the convergence rates for the procedures depend on both the number of sample curves and the number of observations on each curve. For sparse functional data, these rates are equivalent to the optimal rates in nonparametric regression. For dense functional data, root-n rates of convergence can be achieved with proper choices of bandwidths. We further derive almost sure rates of convergence for principal component analysis using the estimated covariance function. The results are illustrated with simulation studies.
193 - Yehua Li , Tailen Hsing 2010
In this paper, we consider regression models with a Hilbert-space-valued predictor and a scalar response, where the response depends on the predictor only through a finite number of projections. The linear subspace spanned by these projections is called the effective dimension reduction (EDR) space. To determine the dimensionality of the EDR space, we focus on the leading principal component scores of the predictor, and propose two sequential $chi^2$ testing procedures under the assumption that the predictor has an elliptically contoured distribution. We further extend these procedures and introduce a test that simultaneously takes into account a large number of principal component scores. The proposed procedures are supported by theory, validated by simulation studies, and illustrated by a real-data example. Our methods and theory are applicable to functional data and high-dimensional multivariate data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا