Valley Polarization Enhancement Induced by a Single Chiral Nanoparticle


Abstract in English

Valley polarization is amongst the most critical attributes of atomically thin materials. However, achieving a high contrast from monolayer transition metal dichalcogenides (TMDs) has so far been challenging. In this work, a giant valley polarization contrast up to 45% from a monolayer WS2 has been achieved at room temperature by using a single chiral plasmonic nanoparticle. The increased contrast is attributed to the selective enhancement of both the excitation and the emission rate having one particular handedness of the circular polarization. The experimental results were corroborated by the optical simulation using finite-difference time-domain (FDTD) method. Additionally, the single chiral nanoparticle enabled the observation of valley-polarized luminescence with a linear excitation. Our results provide a promising pathway to enhance valley contrast from monolayer TMDs and utilize them for nanophotonic devices.

Download