Do you want to publish a course? Click here

Constructibility of a Causal/Impulse Free NDS Using Descriptor Form Subsystems

95   0   0.0 ( 0 )
 Added by Tong Zhou
 Publication date 2020
and research's language is English
 Authors Tong Zhou




Ask ChatGPT about the research

Requirements are investigated in this paper for each descriptor form subsystem, with which a causal/impulse free networked dynamic system (NDS) can be constructed. For this purpose, a matrix rank based necessary and sufficient condition is at first derived for the causality/impulse freeness of an NDS, in which the associated matrix depends affinely on subsystem connections. From this result, a necessary and sufficient condition is derived for each subsystem, such that there exists a subsystem connection matrix that leads to a causal/impulse free NDS. This condition further leads to a necessary and sufficient condition for the existence of a local static output feedback that guarantees the construction of a causal/impulse free NDS. A prominent property of these conditions are that all the involved numerical computations are performed independently on each individual subsystem, which is quite attractive in reducing computation costs and improving numerical stability for large scale NDS analysis and synthesis. Situations have also been clarified in which NDS causality/impulse freeness is independent of subsystem connections. It has also been made clear that under some situations, local static output feedbacks are not helpful in constructing a causal NDS.



rate research

Read More

84 - Tong Zhou , Kailin Yin 2021
This paper investigates requirements on a networked dynamic system (NDS) such that its subsystem interactions can be solely determined from experiment data or reconstructed from its overall model. The NDS is constituted from several subsystems whose dynamics are described through a descriptor form. Except regularity on each subsystem and the whole NDS, no other restrictions are put on either subsystem dynamics or subsystem interactions. A matrix rank based necessary and sufficient condition is derived for the global identifiability of subsystem interactions, which leads to several conclusions about NDS structure identifiability when there is some a priori information. This matrix also gives an explicit description for the set of subsystem interactions that can not be distinguished from experiment data only. In addition, under a well-posedness assumption, a necessary and sufficient condition is obtained for the reconstructibility of subsystem interactions from an NDS descriptor form model. This condition can be verified with each subsystem separately and is therefore attractive in the analysis and synthesis of a large-scale NDS. Simulation results show that rather than increases monotonically with the distance of subsystem interactions to the undifferentiable set, the magnitude of the external output differences between two NDSs with distinct subsystem interactions increases much more rapidly when one of them is close to be unstable. In addition, directions of probing signals are also very important in distinguishing external outputs of distinctive NDSs.These findings are expected to be helpful in identification experiment designs, etc.
62 - Tong Zhou 2020
Requirements on subsystems have been made clear in this paper for a linear time invariant (LTI) networked dynamic system (NDS), under which subsystem interconnections can be estimated from external output measurements. In this NDS, subsystems may have distinctive dynamics, and subsystem interconnections are arbitrary. It is assumed that system matrices of each subsystem depend on its (pseudo) first principle parameters (FPPs) through a linear fractional transformation (LFT). It has been proven that if in each subsystem, the transfer function matrix (TFM) from its internal inputs to its external outputs is of full normal column rank (FNCR), while the TFM from its external inputs to its internal outputs is of full normal row rank (FNRR), then the structure of the NDS is identifiable. Moreover, under some particular situations like there are no direct information transmission from an internal input to an internal output in each subsystem, a necessary and sufficient condition is established for NDS structure identifiability. A matrix valued polynomial (MVP) rank based equivalent condition is further derived, which depends affinely on subsystem (pseudo) FPPs and can be independently verified for each subsystem. From this condition, some necessary conditions are obtained for both subsystem dynamics and its (pseudo) FPPs, using the Kronecker canonical form (KCF) of a matrix pencil.
This paper describes an adaptive method in continuous time for the estimation of external fields by a team of $N$ agents. The agents $i$ each explore subdomains $Omega^i$ of a bounded subset of interest $Omegasubset X := mathbb{R}^d$. Ideal adaptive estimates $hat{g}^i_t$ are derived for each agent from a distributed parameter system (DPS) that takes values in the scalar-valued reproducing kernel Hilbert space $H_X$ of functions over $X$. Approximations of the evolution of the ideal local estimate $hat{g}^i_t$ of agent $i$ is constructed solely using observations made by agent $i$ on a fine time scale. Since the local estimates on the fine time scale are constructed independently for each agent, we say that the method is strictly decentralized. On a coarse time scale, the individual local estimates $hat{g}^i_t$ are fused via the expression $hat{g}_t:=sum_{i=1}^NPsi^i hat{g}^i_t$ that uses a partition of unity ${Psi^i}_{1leq ileq N}$ subordinate to the cover ${Omega^i}_{i=1,ldots,N}$ of $Omega$. Realizable algorithms are obtained by constructing finite dimensional approximations of the DPS in terms of scattered bases defined by each agent from samples along their trajectories. Rates of convergence of the error in the finite dimensional approximations are derived in terms of the fill distance of the samples that define the scattered centers in each subdomain. The qualitative performance of the convergence rates for the decentralized estimation method is illustrated via numerical simulations.
We study the problem of estimating the parameters (i.e., infection rate and recovery rate) governing the spread of epidemics in networks. Such parameters are typically estimated by measuring various characteristics (such as the number of infected and recovered individuals) of the infected populations over time. However, these measurements also incur certain costs, depending on the population being tested and the times at which the tests are administered. We thus formulate the epidemic parameter estimation problem as an optimization problem, where the goal is to either minimize the total cost spent on collecting measurements, or to optimize the parameter estimates while remaining within a measurement budget. We show that these problems are NP-hard to solve in general, and then propose approximation algorithms with performance guarantees. We validate our algorithms using numerical examples.
Linear time-invariant (LTI) systems appear frequently in natural sciences and engineering contexts. Many LTI systems are described by ordinary differential equations (ODEs). For example, biological gene regulation, analog filter circuits, and simple mechanical, electrical, and hydraulic systems can all be described with varying approximations as LTI systems using ODEs. While linearity and time-invariance are straightforward to demonstrate for closed-form system definitions, determining whether an ODE describes a system with LTI properties is less obvious and rarely discussed in depth in the literature. Complications arise due to slightly different definitions of linearity in different contexts. This commentary is intended to provide clarity on this subtle point, and act as an instructional aid or educational supplement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا