Do you want to publish a course? Click here

Real-time sextupole tuning for a long in-plane polarization at storage rings

54   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A long in-plane beam polarization can be a desired feature for spin measurement experiments in storage rings. The spin precession of the particles within a beam can be controlled by means of the frozen spin method and beam bunching via RF cavities, eventually yielding a polarization lifetime of 10--100 seconds. Previous studies have shown that it can be further improved by sextupoles, which correct the second order effects related to the chromaticity of the beam. However, sextupoles can require readjustment after slight changes in ring parameters. This work presents a real-time sextupole tuning method that relies on a feedback algorithm. It adjusts the sextupole strength during storage, targeting a zero average radial spin component. Satisfying this condition results in a longer polarization lifetime. Simulation studies show that roughly determined feedback coefficients in this method work effectively for a wide range of ring parameters, with practical field imperfections and measurement errors taken into account. Alternatively, this technique can be used to optimize sextupole strengths in a test run without intervening the measurement.



rate research

Read More

In this paper, beam diagnostic and monitoring tools developed by the MAX IV Operations Group are discussed. In particular, new beam position monitoring and accelerator tunes visualization software tools, as well as tools that directly influence the beam quality and stability are introduced. An availability and downtime monitoring application is also presented.
In this paper, we demonstrate the connection between a magnetic storage ring with additional sextupole fields set so that the x and y chromaticities vanish and the maximizing of the lifetime of in-plane polarization (IPP) for a 0.97-GeV/c deuteron beam. The IPP magnitude was measured by continuously monitoring the down-up scattering asymmetry (sensitive to sideways polarization) in an in-beam, carbon-target polarimeter and unfolding the precession of the IPP due to the magnetic anomaly of the deuteron. The optimum operating conditions for a long IPP lifetime were made by scanning the field of the storage ring sextupole magnet families while observing the rate of IPP loss during storage of the beam. The beam was bunched and electron cooled. The IPP losses appear to arise from the change of the orbit circumference, and consequently the particle speed and spin tune, due to the transverse betatron oscillations of individual particles in the beam. The effects of these changes are canceled by an appropriate sextupole field setting.
A scheme with two superconducting RF cavities (sc-cavities) is designed to upgrade electron storage rings with odd buckets into multi-length bunches. In this paper, Hefei Light Source II (HLS II) is given as an example for odd buckets. In accordance with 45 buckets, which is multiples of 3, three different length of bunches generated simultaneously is proposed in the presently applied user optics. The final result is to, without low-alpha optics, fill HLS II with long bunches of 50 ps length, medium bunches of 23 ps and short bunches of 6 ps. Each third buckets can be filled with short bunches, of which the current limit is up to 6.6 mA, more than 60 times the value of low-alpha mode. Moreover, particles tracking about beam dynamics performed by ELEGANT and calculations about beam instabilities are presented in this paper.
We report some highlights from the ARIES APEC workshop on ``Storage Rings and Gravitational Waves (SRGW2021), held in virtual space from 2 February to 18 March 2021, and sketch a tentative landscape for using accelerators and associated technologies for the detection or generation of gravitational waves.
A new method to determine the spin tune is described and tested. In an ideal planar magnetic ring, the spin tune - defined as the number of spin precessions per turn - is given by $ u_s = gamma G$ (gamma is the Lorentz factor, $G$ the magnetic anomaly). For 970 MeV/c deuterons coherently precessing with a frequency of ~120 kHz in the Cooler Synchrotron COSY, the spin tune is deduced from the up-down asymmetry of deuteron carbon scattering. In a time interval of 2.6 s, the spin tune was determined with a precision of the order $10^{-8}$, and to $1 cdot 10^{-10}$ for a continuous 100 s accelerator cycle. This renders the presented method a new precision tool for accelerator physics: controlling the spin motion of particles to high precision is mandatory, in particular, for the measurement of electric dipole moments of charged particles in a storage ring.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا