We demonstrate that the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in graphene can be strongly modified by a time-periodic driving field even in the weak drive regime. This effect is due to the opening of a dynamical band gap at the Dirac points when graphene is exposed to circularly polarized light. Using Keldysh-Floquet Greens functions, we develop a theoretical framework to calculate the time-averaged RKKY coupling under weak periodic drives and show that its magnitude in undoped graphene can be decreased controllably by increasing the driving strength, while mostly maintaining its ferromagnetic or antiferromagnetic character. In doped graphene, we find RKKY oscillations with a period that is tunable by the driving field. When a sufficiently strong drive is turned on that brings the Fermi level completely within the dynamically opened gap, the behavior of the RKKY coupling changes qualitatively from that of doped to undoped irradiated graphene.