Ferromagnetic cluster-glass phase in Ca(Co,Ir)2As2 crystals


Abstract in English

Single crystals of Ca[Co_(2-x)Ir_(x)]_(2-y)As2 with 0 <= x <= 0.35 and 0.10 <= y <= 0.14 have been grown using the self-flux technique and characterized by single-crystal x-ray diffraction (XRD), energy-dispersive x-ray spectroscopy, magnetization M and magnetic susceptibility chi measurements versus temperature T, magnetic field H, and time t, and heat capacity Cp(H,T) measurements. The XRD refinements reveal that all the Ir-substituted crystals crystallize in a collapsed-tetragonal structure as does the parent CaCo_(2-y)As2 compound. A small 3.3% Ir substitution for Co in CaCo_(1.86)As2 drastically lowers the A-type antiferromagnetic (AFM) transition temperature TN from 52 to 23 K with a significant enhancement of the Sommerfeld electronic heat-capacity coefficient. The positive Weiss temperatures obtained from Curie-Weiss fits to the chi(T>TN) data indicate that the dominant magnetic interactions are ferromagnetic (FM) for all x. A magnetic phase boundary is inferred to be present between x = 0.14 and x = 0.17 from a discontinuity in the x dependences of the effective moment and Weiss temperature in the Curie-Weiss fits. FM fluctuations that strongly increase with increasing x are also revealed from the chi(T) data. The magnetic ground state for x >= 0.17 is a spin glass as indicated by hysteresis in chi(T) between field-cooling and zero-field-cooling measurements and from the relaxation of M in a small field that exhibits a stretched-exponential time dependence. The spin glass has a small FM component to the ordering and is hence inferred to be comprised of small FM clusters. A logarithmic T dependence of Cp at low T for x = 0.14 is consistent with the presence of significant FM quantum fluctuations. This composition is near the T = 0 boundary at x = 0.16 between the A-type AFM phase containing ferromagnetically-aligned layers of spins and the FM cluster-glass phase.

Download