Do you want to publish a course? Click here

A Framework for Evaluating Gradient Leakage Attacks in Federated Learning

90   0   0.0 ( 0 )
 Added by Wenqi Wei
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Federated learning (FL) is an emerging distributed machine learning framework for collaborative model training with a network of clients (edge devices). FL offers default client privacy by allowing clients to keep their sensitive data on local devices and to only share local training parameter updates with the federated server. However, recent studies have shown that even sharing local parameter updates from a client to the federated server may be susceptible to gradient leakage attacks and intrude the client privacy regarding its training data. In this paper, we present a principled framework for evaluating and comparing different forms of client privacy leakage attacks. We first provide formal and experimental analysis to show how adversaries can reconstruct the private local training data by simply analyzing the shared parameter update from local training (e.g., local gradient or weight update vector). We then analyze how different hyperparameter configurations in federated learning and different settings of the attack algorithm may impact on both attack effectiveness and attack cost. Our framework also measures, evaluates, and analyzes the effectiveness of client privacy leakage attacks under different gradient compression ratios when using communication efficient FL protocols. Our experiments also include some preliminary mitigation strategies to highlight the importance of providing a systematic attack evaluation framework towards an in-depth understanding of the various forms of client privacy leakage threats in federated learning and developing theoretical foundations for attack mitigation.



rate research

Read More

98 - Wenqi Wei , Ling Liu , Yanzhao Wu 2021
Federated learning(FL) is an emerging distributed learning paradigm with default client privacy because clients can keep sensitive data on their devices and only share local training parameter updates with the federated server. However, recent studies reveal that gradient leakages in FL may compromise the privacy of client training data. This paper presents a gradient leakage resilient approach to privacy-preserving federated learning with per training example-based client differential privacy, coined as Fed-CDP. It makes three original contributions. First, we identify three types of client gradient leakage threats in federated learning even with encrypted client-server communications. We articulate when and why the conventional server coordinated differential privacy approach, coined as Fed-SDP, is insufficient to protect the privacy of the training data. Second, we introduce Fed-CDP, the per example-based client differential privacy algorithm, and provide a formal analysis of Fed-CDP with the $(epsilon, delta)$ differential privacy guarantee, and a formal comparison between Fed-CDP and Fed-SDP in terms of privacy accounting. Third, we formally analyze the privacy-utility trade-off for providing differential privacy guarantee by Fed-CDP and present a dynamic decay noise-injection policy to further improve the accuracy and resiliency of Fed-CDP. We evaluate and compare Fed-CDP and Fed-CDP(decay) with Fed-SDP in terms of differential privacy guarantee and gradient leakage resilience over five benchmark datasets. The results show that the Fed-CDP approach outperforms conventional Fed-SDP in terms of resilience to client gradient leakages while offering competitive accuracy performance in federated learning.
Secure aggregation is a critical component in federated learning, which enables the server to learn the aggregate model of the users without observing their local models. Conventionally, secure aggregation algorithms focus only on ensuring the privacy of individual users in a single training round. We contend that such designs can lead to significant privacy leakages over multiple training rounds, due to partial user selection/participation at each round of federated learning. In fact, we empirically show that the conventional random user selection strategies for federated learning lead to leaking users individual models within number of rounds linear in the number of users. To address this challenge, we introduce a secure aggregation framework with multi-round privacy guarantees. In particular, we introduce a new metric to quantify the privacy guarantees of federated learning over multiple training rounds, and develop a structured user selection strategy that guarantees the long-term privacy of each user (over any number of training rounds). Our framework also carefully accounts for the fairness and the average number of participating users at each round. We perform several experiments on MNIST and CIFAR-10 datasets in the IID and the non-IID settings to demonstrate the performance improvement over the baseline algorithms, both in terms of privacy protection and test accuracy.
97 - Xue Yang , Yan Feng , Weijun Fang 2020
Although federated learning improves privacy of training data by exchanging local gradients or parameters rather than raw data, the adversary still can leverage local gradients and parameters to obtain local training data by launching reconstruction and membership inference attacks. To defend such privacy attacks, many noises perturbation methods (like differential privacy or CountSketch matrix) have been widely designed. However, the strong defence ability and high learning accuracy of these schemes cannot be ensured at the same time, which will impede the wide application of FL in practice (especially for medical or financial institutions that require both high accuracy and strong privacy guarantee). To overcome this issue, in this paper, we propose emph{an efficient model perturbation method for federated learning} to defend reconstruction and membership inference attacks launched by curious clients. On the one hand, similar to the differential privacy, our method also selects random numbers as perturbed noises added to the global model parameters, and thus it is very efficient and easy to be integrated in practice. Meanwhile, the random selected noises are positive real numbers and the corresponding value can be arbitrarily large, and thus the strong defence ability can be ensured. On the other hand, unlike differential privacy or other perturbation methods that cannot eliminate the added noises, our method allows the server to recover the true gradients by eliminating the added noises. Therefore, our method does not hinder learning accuracy at all.
Machine Learning services are being deployed in a large range of applications that make it easy for an adversary, using the algorithm and/or the model, to gain access to sensitive data. This paper investigates fundamental bounds on information leakage. First, we identify and bound the success rate of the worst-case membership inference attack, connecting it to the generalization error of the target model. Second, we study the question of how much sensitive information is stored by the algorithm about the training set and we derive bounds on the mutual information between the sensitive attributes and model parameters. Although our contributions are mostly of theoretical nature, the bounds and involved concepts are of practical relevance. Inspired by our theoretical analysis, we study linear regression and DNN models to illustrate how these bounds can be used to assess the privacy guarantees of ML models.
The application of Machine Learning (ML) techniques to the well-known intrusion detection systems (IDS) is key to cope with increasingly sophisticated cybersecurity attacks through an effective and efficient detection process. In the context of the Internet of Things (IoT), most ML-enabled IDS approaches use centralized approaches where IoT devices share their data with data centers for further analysis. To mitigate privacy concerns associated with centralized approaches, in recent years the use of Federated Learning (FL) has attracted a significant interest in different sectors, including healthcare and transport systems. However, the development of FL-enabled IDS for IoT is in its infancy, and still requires research efforts from various areas, in order to identify the main challenges for the deployment in real-world scenarios. In this direction, our work evaluates a FL-enabled IDS approach based on a multiclass classifier considering different data distributions for the detection of different attacks in an IoT scenario. In particular, we use three different settings that are obtained by partitioning the recent ToN_IoT dataset according to IoT devices IP address and types of attack. Furthermore, we evaluate the impact of different aggregation functions according to such setting by using the recent IBMFL framework as FL implementation. Additionally, we identify a set of challenges and future directions based on the existing literature and the analysis of our evaluation results.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا