Do you want to publish a course? Click here

Universality between vector-like and chiral quiver gauge theories: Anomalies and domain walls

75   0   0.0 ( 0 )
 Added by Yuya Tanizaki
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We study low-energy dynamics of $[SU(N)]^K$ chiral quiver gauge theories in connection with $mathcal{N}=1$ super Yang-Mills (SYM) theory, and quantum chromodynamics with bi-fundamental fermions (QCD(BF)). These theories can be obtained by $mathbb{Z}_K$ orbifold projections of $mathcal{N}=1$ $SU(NK)$ SYM theory, but the perturbative planar equivalence does not extend nonperturbatively for $Kge 3$. In order to study low-energy behaviors, we analyze these systems using t~Hooft anomaly matching and reliable semiclassics on $mathbb{R}^3times S^1$. Thanks to t~Hooft anomaly that involves $1$-form center symmetry and discrete chiral symmetry, we predict that chiral symmetry must be spontaneously broken in the confinement phase, and there exist $N$ vacua. Theories with even $K$ possess a physical $theta$ angle despite the presence of massless fermions, and we further predict the $N$-branch structure associated with it; the number of vacua is enhanced to $2N$ at $theta=pi$ due to spontaneous $CP$ breaking. Both of these predictions are explicitly confirmed by reliable semiclassics on $mathbb{R}^3times S^1$ with the double-trace deformation. Symmetry and anomaly of odd-$K$ theories are the same as those of the ${cal N}=1$ SYM, and the ones of even-$K$ theories are same as those of QCD(BF). We unveil why there exists universality between vector-like and chiral quiver theories, and conjecture that their ground states can be continuously deformed without quantum phase transitions. We briefly discuss anomaly inflow on the domain walls connecting the vacua of the theory and possible anomaly matching scenarios.



rate research

Read More

We discuss in detail the problem of counting BPS gauge invariant operators in the chiral ring of quiver gauge theories living on D-branes probing generic toric CY singularities. The computation of generating functions that include counting of baryonic operators is based on a relation between the baryonic charges in field theory and the Kaehler moduli of the CY singularities. A study of the interplay between gauge theory and geometry shows that given geometrical sectors appear more than once in the field theory, leading to a notion of multiplicities. We explain in detail how to decompose the generating function for one D-brane into different sectors and how to compute their relevant multiplicities by introducing geometric and anomalous baryonic charges. The Plethystic Exponential remains a major tool for passing from one D-brane to arbitrary number of D-branes. Explicit formulae are given for few examples, including C^3/Z_3, F_0, and dP_1.
92 - Taichi Itoh 2003
We examine the equivalence between the Konishi anomaly equations and the matrix model loop equations in N=1* gauge theories, the mass deformation of N=4 supersymmetric Yang-Mills. We perform the superfunctional integral of two adjoint chiral superfields to obtain an effective N=1 theory of the third adjoint chiral superfield. By choosing an appropriate holomorphic variation, the Konishi anomaly equations correctly reproduce the loop equations in the corresponding three-matrix model. We write down the field theory loop equations explicitly by using a noncommutative product of resolvents peculiar to N=1* theories. The field theory resolvents are identified with those in the matrix model in the same manner as for the generic N=1 gauge theories. We cover all the classical gauge groups. In SO/Sp cases, both the one-loop holomorphic potential and the Konishi anomaly term involve twisting of index loops to change a one-loop oriented diagram to an unoriented diagram. The field theory loop equations for these cases show certain inhomogeneous terms suggesting the matrix model loop equations for the RP2 resolvent.
Reflexive polygons have been extensively studied in a variety of contexts in mathematics and physics. We generalize this programme by looking at the 45 different lattice polygons with two interior points up to SL(2,$mathbb{Z}$) equivalence. Each corresponds to some affine toric 3-fold as a cone over a Sasaki-Einstein 5-fold. We study the quiver gauge theories of D3-branes probing these cones, which coincide with the mesonic moduli space. The minimum of the volume function of the Sasaki-Einstein base manifold plays an important role in computing the R-charges. We analyze these minimized volumes with respect to the topological quantities of the compact surfaces constructed from the polygons. Unlike reflexive polytopes, one can have two fans from the two interior points, and hence give rise to two smooth varieties after complete resolutions, leading to an interesting pair of closely related geometries and gauge theories.
We consider SU(3)-equivariant dimensional reduction of Yang-Mills theory on Kaehler manifolds of the form M x SU(3)/H, with H = SU(2) x U(1) or H = U(1) x U(1). The induced rank two quiver gauge theories on M are worked out in detail for representations of H which descend from a generic irreducible SU(3)-representation. The reduction of the Donaldson-Uhlenbeck-Yau equations on these spaces induces nonabelian quiver vortex equations on M, which we write down explicitly. When M is a noncommutative deformation of the space C^d, we construct explicit BPS and non-BPS solutions of finite energy for all cases. We compute their topological charges in three different ways and propose a novel interpretation of the configurations as states of D-branes. Our methods and results generalize from SU(3) to any compact Lie group.
257 - Taro Kimura , Rui-Dong Zhu 2019
The topological vertex formalism for 5d $mathcal{N}=1$ gauge theories is not only a convenient tool to compute the instanton partition function of these theories, but it is also accompanied by a nice algebraic structure that reveals various kinds of nice properties such as dualities and integrability of the underlying theories. The usual refined topological vertex formalism is derived for gauge theories with $A$-type quiver structure (and $A$-type gauge groups). In this article, we propose a construction with a web of vertex operators for all $ABCDEFG$-type and affine quivers by introducing several new vertices into the formalism, based on the reproducing of known instanton partition functions and qq-characters for these theories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا