Do you want to publish a course? Click here

Network Anomaly Detection based on Tensor Decomposition

132   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The problem of detecting anomalies in time series from network measurements has been widely studied and is a topic of fundamental importance. Many anomaly detection methods are based on packet inspection collected at the network core routers, with consequent disadvantages in terms of computational cost and privacy. We propose an alternative method in which packet header inspection is not needed. The method is based on the extraction of a normal subspace obtained by the tensor decomposition technique considering the correlation between different metrics. We propose a new approach for online tensor decomposition where changes in the normal subspace can be tracked efficiently. Another advantage of our proposal is the interpretability of the obtained models. The flexibility of the method is illustrated by applying it to two distinct examples, both using actual data collected on residential routers.



rate research

Read More

323 - Jinfa Wang , Siyuan Jia , Hai Zhao 2017
Detecting the anomaly behaviors such as network failure or Internet intentional attack in the large-scale Internet is a vital but challenging task. While numerous techniques have been developed based on Internet traffic in past years, anomaly detection for structured datasets by complex network have just been of focus recently. In this paper, a anomaly detection method for large-scale Internet topology is proposed by considering the changes of network crashes. In order to quantify the dynamic changes of Internet topology, the network path changes coefficient(NPCC) is put forward which will highlight the Internet abnormal state after it is attacked continuously. Furthermore we proposed the decision function which is inspired by Fibonacci Sequence to determine whether the Internet is abnormal or not. That is the current Internet is abnormal if its NPCC is beyond the normal domain which structured by the previous k NPCCs of Internet topology. Finally the new Internet anomaly detection method was tested over the topology data of three Internet anomaly events. The results show that the detection accuracy of all events are over 97%, the detection precision of each event are 90.24%, 83.33% and 66.67%, when k = 36. According to the experimental values of the index F_1, we found the the better the detection performance is, the bigger the k is, and our method has better performance for the anomaly behaviors caused by network failure than that caused by intentional attack. Compared with traditional anomaly detection, our work may be more simple and powerful for the government or organization in items of detecting large-scale abnormal events.
This paper addresses network anomography, that is, the problem of inferring network-level anomalies from indirect link measurements. This problem is cast as a low-rank subspace tracking problem for normal flows under incomplete observations, and an outlier detection problem for abnormal flows. Since traffic data is large-scale time-structured data accompanied with noise and outliers under partial observations, an efficient modeling method is essential. To this end, this paper proposes an online subspace tracking of a Hankelized time-structured traffic tensor for normal flows based on the Candecomp/PARAFAC decomposition exploiting the recursive least squares (RLS) algorithm. We estimate abnormal flows as outlier sparse flows via sparsity maximization in the underlying under-constrained linear-inverse problem. A major advantage is that our algorithm estimates normal flows by low-dimensional matrices with time-directional features as well as the spatial correlation of multiple links without using the past observed measurements and the past model parameters. Extensive numerical evaluations show that the proposed algorithm achieves faster convergence per iteration of model approximation, and better volume anomaly detection performance compared to state-of-the-art algorithms.
This paper proposes to develop a network phenotyping mechanism based on network resource usage analysis and identify abnormal network traffic. The network phenotyping may use different metrics in the cyber physical system (CPS), including resource and network usage monitoring, physical state estimation. The set of devices will collectively decide a holistic view of the entire system through advanced image processing and machine learning methods. In this paper, we choose the network traffic pattern as a study case to demonstrate the effectiveness of the proposed method, while the methodology may similarly apply to classification and anomaly detection based on other resource metrics. We apply image processing and machine learning on the network resource usage to extract and recognize communication patterns. The phenotype method is experimented on four real-world decentralized applications. With proper length of sampled continuous network resource usage, the overall recognition accuracy is about 99%. Additionally, the recognition error is used to detect the anomaly network traffic. We simulate the anomaly network resource usage that equals to 10%, 20% and 30% of the normal network resource usage. The experiment results show the proposed anomaly detection method is efficient in detecting each intensity of anomaly network resource usage.
113 - Tie Luo , Sai G. Nagarajan 2018
Wireless sensor networks (WSN) are fundamental to the Internet of Things (IoT) by bridging the gap between the physical and the cyber worlds. Anomaly detection is a critical task in this context as it is responsible for identifying various events of interests such as equipment faults and undiscovered phenomena. However, this task is challenging because of the elusive nature of anomalies and the volatility of the ambient environments. In a resource-scarce setting like WSN, this challenge is further elevated and weakens the suitability of many existing solutions. In this paper, for the first time, we introduce autoencoder neural networks into WSN to solve the anomaly detection problem. We design a two-part algorithm that resides on sensors and the IoT cloud respectively, such that (i) anomalies can be detected at sensors in a fully distributed manner without the need for communicating with any other sensors or the cloud, and (ii) the relatively more computation-intensive learning task can be handled by the cloud with a much lower (and configurable) frequency. In addition to the minimal communication overhead, the computational load on sensors is also very low (of polynomial complexity) and readily affordable by most COTS sensors. Using a real WSN indoor testbed and sensor data collected over 4 consecutive months, we demonstrate via experiments that our proposed autoencoder-based anomaly detection mechanism achieves high detection accuracy and low false alarm rate. It is also able to adapt to unforeseeable and new changes in a non-stationary environment, thanks to the unsupervised learning feature of our chosen autoencoder neural networks.
Recent years have witnessed an upsurge of interest in the problem of anomaly detection on attributed networks due to its importance in both research and practice. Although various approaches have been proposed to solve this problem, two major limitations exist: (1) unsupervised approaches usually work much less efficiently due to the lack of supervisory signal, and (2) existing anomaly detection methods only use local contextual information to detect anomalous nodes, e.g., one- or two-hop information, but ignore the global contextual information. Since anomalous nodes differ from normal nodes in structures and attributes, it is intuitive that the distance between anomalous nodes and their neighbors should be larger than that between normal nodes and their neighbors if we remove the edges connecting anomalous and normal nodes. Thus, hop counts based on both global and local contextual information can be served as the indicators of anomaly. Motivated by this intuition, we propose a hop-count based model (HCM) to detect anomalies by modeling both local and global contextual information. To make better use of hop counts for anomaly identification, we propose to use hop counts prediction as a self-supervised task. We design two anomaly scores based on the hop counts prediction via HCM model to identify anomalies. Besides, we employ Bayesian learning to train HCM model for capturing uncertainty in learned parameters and avoiding overfitting. Extensive experiments on real-world attributed networks demonstrate that our proposed model is effective in anomaly detection.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا