No Arabic abstract
Hedetniemi conjectured in 1966 that $chi(G times H) = min{chi(G), chi(H)}$ for all graphs $G$ and $H$. Here $Gtimes H$ is the graph with vertex set $ V(G)times V(H)$ defined by putting $(x,y)$ and $(x,y)$ adjacent if and only if $xxin E(G)$ and $yyin E(H)$. This conjecture received a lot of attention in the past half century. Recently, Shitov refuted this conjecture. Let $p$ be the minimum number of vertices in a graph of odd girth $7$ and fractional chromatic number greater than $3+4/(p-1)$. Shitovs proof shows that Hedetniemis conjecture fails for some graphs with chromatic number about $p^22^{p+1} $ and with about $(p^22^{p+1})^{p^32^{p-1}} $ vertices. In this paper, we show that the conjecture fails already for some graphs $G$ and $H$ with chromatic number $3lceil frac {p+1}2 rceil $ and with $p lceil (p-1)/2 rceil$ and $3 lceil frac {p+1}2 rceil (p+1)-p$ vertices, respectively. The currently known upper bound for $p$ is $148$. Thus Hedetniemis conjecture fails for some graphs $G$ and $H$ with chromatic number $225$, and with $10,952$ and $33,377$ vertices, respectively.
The Hall ratio of a graph $G$ is the maximum value of $v(H) / alpha(H)$ taken over all non-null subgraphs $H$ of $G$. For any graph, the Hall ratio is a lower-bound on its fractional chromatic number. In this note, we present various constructions of graphs whose fractional chromatic number grows much faster than their Hall ratio. This refutes a conjecture of Harris.
A quadrisecant of a knot is a straight line intersecting the knot at four points. If a knot has finitely many quadrisecants, one can replace each subarc between two adjacent secant points by the line segment between them to get the quadrisecant approximation of the original knot. It was conjectured that the quadrisecant approximation is always a knot with the same knot type as the original knot. We show that every knot type contains two knots, the quadrisecant approximation of one knot has self intersections while the quadrisecant approximation of the other knot is a knot with different knot type.
We give improved separations for the query complexity analogue of the log-approximate-rank conjecture i.e. we show that there are a plethora of total Boolean functions on $n$ input bits, each of which has approximate Fourier sparsity at most $O(n^3)$ and randomized parity decision tree complexity $Theta(n)$. This improves upon the recent work of Chattopadhyay, Mande and Sherif (JACM 20) both qualitatively (in terms of designing a large number of examples) and quantitatively (improving the gap from quartic to cubic). We leave open the problem of proving a randomized communication complexity lower bound for XOR compositions of our examples. A linear lower bound would lead to new and improved refutations of the log-approximate-rank conjecture. Moreover, if any of these compositions had even a sub-linear cost randomized communication protocol, it would demonstrate that randomized parity decision tree complexity does not lift to randomized communication complexity in general (with the XOR gadget).
Tuza (1981) conjectured that the size $tau(G)$ of a minimum set of edges that intersects every triangle of a graph $G$ is at most twice the size $ u(G)$ of a maximum set of edge-disjoint triangles of $G$. In this paper we present three results regarding Tuzas Conjecture. We verify it for graphs with treewidth at most $6$; we show that $tau(G)leq frac{3}{2}, u(G)$ for every planar triangulation $G$ different from $K_4$; and that $tau(G)leqfrac{9}{5}, u(G) + frac{1}{5}$ if $G$ is a maximal graph with treewidth 3. Our first result strengthens a result of Tuza, implying that $tau(G) leq 2, u(G)$ for every $K_8$-free chordal graph $G$.
This report formulates a conjectural combinatorial rule that positively expands Grothendieck polynomials into Lascoux polynomials. It generalizes one such formula expanding Schubert polynomials into key polynomials, and refines another one expanding stable Grothendieck polynomials.