Do you want to publish a course? Click here

A Proof of Grunbaums Lower Bound Conjecture for general polytopes

124   0   0.0 ( 0 )
 Added by Lei Xue
 Publication date 2020
  fields
and research's language is English
 Authors Lei Xue




Ask ChatGPT about the research

In 1967, Grunbaum conjectured that any $d$-dimensional polytope with $d+sleq 2d$ vertices has at least [phi_k(d+s,d) = {d+1 choose k+1 }+{d choose k+1 }-{d+1-s choose k+1 } ] $k$-faces. We prove this conjecture and also characterize the cases in which equality holds.



rate research

Read More

A remarkable and important property of face numbers of simplicial polytopes is the generalized lower bound inequality, which says that the $h$-numbers of any simplicial polytope are unimodal. Recently, for balanced simplicial $d$-polytopes, that is simplicial $d$-polytopes whose underlying graphs are $d$-colorable, Klee and Novik proposed a balanced analogue of this inequality, that is stronger than just unimodality. The aim of this article is to prove this conjecture of Klee and Novik. For this, we also show a Lefschetz property for rank-selected subcomplexes of balanced simplicial polytopes and thereby obtain new inequalities for their $h$-numbers.
A typical decomposition question asks whether the edges of some graph $G$ can be partitioned into disjoint copies of another graph $H$. One of the oldest and best known conjectures in this area, posed by Ringel in 1963, concerns the decomposition of complete graphs into edge-disjoint copies of a tree. It says that any tree with $n$ edges packs $2n+1$ times into the complete graph $K_{2n+1}$. In this paper, we prove this conjecture for large $n$.
We prove a conjecture of Ohba which says that every graph $G$ on at most $2chi(G)+1$ vertices satisfies $chi_ell(G)=chi(G)$.
86 - Marino Romero 2020
In the context of the (generalized) Delta Conjecture and its compositional form, DAdderio, Iraci, and Wyngaerd recently stated a conjecture relating two symmetric function operators, $D_k$ and $Theta_k$. We prove this Theta Operator Conjecture, finding it as a consequence of the five-term relation of Mellit and Garsia. As a result, we find surprising ways of writing the $D_k$ operators.
We prove that the `Upper Matching Conjecture of Friedland, Krop, and Markstrom and the analogous conjecture of Kahn for independent sets in regular graphs hold for all large enough graphs as a function of the degree. That is, for every $d$ and every large enough $n$ divisible by $2d$, a union of $n/(2d)$ copies of the complete $d$-regular bipartite graph maximizes the number of independent sets and matchings of size $k$ for each $k$ over all $d$-regular graphs on $n$ vertices. To prove this we utilize the cluster expansion for the canonical ensemble of a statistical physics spin model, and we give some further applications of this method to maximizing and minimizing the number of independent sets and matchings of a given size in regular graphs of a given minimum girth.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا