Detection and Estimation of Local Signals


Abstract in English

We study the maximum score statistic to detect and estimate local signals in the form of change-points in the level, slope, or other property of a sequence of observations, and to segment the sequence when there appear to be multiple changes. We find that when observations are serially dependent, the change-points can lead to upwardly biased estimates of autocorrelations, resulting in a sometimes serious loss of power. Examples involving temperature variations, the level of atmospheric greenhouse gases, suicide rates and daily incidence of COVID-19 illustrate the general theory.

Download