Do you want to publish a course? Click here

SongNet: Rigid Formats Controlled Text Generation

79   0   0.0 ( 0 )
 Added by Piji Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Neural text generation has made tremendous progress in various tasks. One common characteristic of most of the tasks is that the texts are not restricted to some rigid formats when generating. However, we may confront some special text paradigms such as Lyrics (assume the music score is given), Sonnet, SongCi (classical Chinese poetry of the Song dynasty), etc. The typical characteristics of these texts are in three folds: (1) They must comply fully with the rigid predefined formats. (2) They must obey some rhyming schemes. (3) Although they are restricted to some formats, the sentence integrity must be guaranteed. To the best of our knowledge, text generation based on the predefined rigid formats has not been well investigated. Therefore, we propose a simple and elegant framework named SongNet to tackle this problem. The backbone of the framework is a Transformer-based auto-regressive language model. Sets of symbols are tailor-designed to improve the modeling performance especially on format, rhyme, and sentence integrity. We improve the attention mechanism to impel the model to capture some future information on the format. A pre-training and fine-tuning framework is designed to further improve the generation quality. Extensive experiments conducted on two collected corpora demonstrate that our proposed framework generates significantly better results in terms of both automatic metrics and the human evaluation.



rate research

Read More

Pretrained Transformer-based language models (LMs) display remarkable natural language generation capabilities. With their immense potential, controlling text generation of such LMs is getting attention. While there are studies that seek to control high-level attributes (such as sentiment and topic) of generated text, there is still a lack of more precise control over its content at the word- and phrase-level. Here, we propose Content-Conditioner (CoCon) to control an LMs output text with a content input, at a fine-grained level. In our self-supervised approach, the CoCon block learns to help the LM complete a partially-observed text sequence by conditioning with content inputs that are withheld from the LM. Through experiments, we show that CoCon can naturally incorporate target content into generated texts and control high-level text attributes in a zero-shot manner.
Recent developments in neural networks have led to the advance in data-to-text generation. However, the lack of ability of neural models to control the structure of generated output can be limiting in certain real-world applications. In this study, we propose a novel Plan-then-Generate (PlanGen) framework to improve the controllability of neural data-to-text models. Extensive experiments and analyses are conducted on two benchmark datasets, ToTTo and WebNLG. The results show that our model is able to control both the intra-sentence and inter-sentence structure of the generated output. Furthermore, empirical comparisons against previous state-of-the-art methods show that our model improves the generation quality as well as the output diversity as judged by human and automatic evaluations.
Neural models for text generation require a softmax layer with proper token embeddings during the decoding phase. Most existing approaches adopt single point embedding for each token. However, a word may have multiple senses according to different context, some of which might be distinct. In this paper, we propose KerBS, a novel approach for learning better embeddings for text generation. KerBS embodies two advantages: (a) it employs a Bayesian composition of embeddings for words with multiple senses; (b) it is adaptive to semantic variances of words and robust to rare sentence context by imposing learned kernels to capture the closeness of words (senses) in the embedding space. Empirical studies show that KerBS significantly boosts the performance of several text generation tasks.
Submodularity is desirable for a variety of objectives in content selection where the current neural encoder-decoder framework is inadequate. However, it has so far not been explored in the neural encoder-decoder system for text generation. In this work, we define diminishing attentions with submodular functions and in turn, prove the submodularity of the effective neural coverage. The greedy algorithm approximating the solution to the submodular maximization problem is not suited to attention score optimization in auto-regressive generation. Therefore instead of following how submodular function has been widely used, we propose a simplified yet principled solution. The resulting attention module offers an architecturally simple and empirically effective method to improve the coverage of neural text generation. We run experiments on three directed text generation tasks with different levels of recovering rate, across two modalities, three different neural model architectures and two training strategy variations. The results and analyses demonstrate that our method generalizes well across these settings, produces texts of good quality and outperforms state-of-the-art baselines.
The paper surveys evaluation methods of natural language generation (NLG) systems that have been developed in the last few years. We group NLG evaluation methods into three categories: (1) human-centric evaluation metrics, (2) automatic metrics that require no training, and (3) machine-learned metrics. For each category, we discuss the progress that has been made and the challenges still being faced, with a focus on the evaluation of recently proposed NLG tasks and neural NLG models. We then present two examples for task-specific NLG evaluations for automatic text summarization and long text generation, and conclude the paper by proposing future research directions.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا