Do you want to publish a course? Click here

The PAU Survey: Photometric redshifts using transfer learning from simulations

138   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we introduce the textsc{Deepz} deep learning photometric redshift (photo-$z$) code. As a test case, we apply the code to the PAU survey (PAUS) data in the COSMOS field. textsc{Deepz} reduces the $sigma_{68}$ scatter statistic by 50% at $i_{rm AB}=22.5$ compared to existing algorithms. This improvement is achieved through various methods, including transfer learning from simulations where the training set consists of simulations as well as observations, which reduces the need for training data. The redshift probability distribution is estimated with a mixture density network (MDN), which produces accurate redshift distributions. Our code includes an autoencoder to reduce noise and extract features from the galaxy SEDs. It also benefits from combining multiple networks, which lowers the photo-$z$ scatter by 10 percent. Furthermore, training with randomly constructed coadded fluxes adds information about individual exposures, reducing the impact of photometric outliers. In addition to opening up the route for higher redshift precision with narrow bands, these machine learning techniques can also be valuable for broad-band surveys.



rate research

Read More

We study the performance of the hybrid template-machine-learning photometric redshift (photo-$z$) algorithm Delight, which uses Gaussian processes, on a subset of the early data release of the Physics of the Accelerating Universe Survey (PAUS). We calibrate the fluxes of the $40$ PAUS narrow bands with $6$ broadband fluxes ($uBVriz$) in the COSMOS field using three different methods, including a new method which utilises the correlation between the apparent size and overall flux of the galaxy. We use a rich set of empirically derived galaxy spectral templates as guides to train the Gaussian process, and we show that our results are competitive with other standard photometric redshift algorithms. Delight achieves a photo-$z$ $68$th percentile error of $sigma_{68}=0.0081(1+z)$ without any quality cut for galaxies with $i_mathrm{auto}<22.5$ as compared to $0.0089(1+z)$ and $0.0202(1+z)$ for the BPz and ANNz2 codes, respectively. Delight is also shown to produce more accurate probability distribution functions for individual redshift estimates than BPz and ANNz2. Common photo-$z$ outliers of Delight and BCNz2 (previously applied to PAUS) are found to be primarily caused by outliers in the narrowband fluxes, with a small number of cases potentially indicating spectroscopic redshift failures in the reference sample. In the process, we introduce performance metrics derived from the results of BCNz2 and Delight, allowing us to achieve a photo-$z$ quality of $sigma_{68}<0.0035(1+z)$ at a magnitude of $i_mathrm{auto}<22.5$ while keeping $50$ per cent objects of the galaxy sample.
We present a robust method to estimate the redshift of galaxies using Pan-STARRS1 photometric data. Our method is an adaptation of the one proposed by Beck et al. (2016) for the SDSS Data Release 12. It uses a training set of 2313724 galaxies for which the spectroscopic redshift is obtained from SDSS, and magnitudes and colours are obtained from the Pan-STARRS1 Data Release 2 survey. The photometric redshift of a galaxy is then estimated by means of a local linear regression in a 5-dimensional magnitude and colour space. Our method achieves an average bias of $overline{Delta z_{rm norm}}=-2.01 times 10^{-4}$, a standard deviation of $sigma(Delta z_{rm norm})=0.0298$, and an outlier rate of $P_o=4.32%$ when cross-validating on the training set. Even though the relation between each of the Pan-STARRS1 colours and the spectroscopic redshifts is noisier than for SDSS colours, the results obtained by our method are very close to those yielded by SDSS data. The proposed method has the additional advantage of allowing the estimation of photometric redshifts on a larger portion of the sky ($sim 3/4$ vs $sim 1/3$). The training set and the code implementing this method are publicly available at www.testaddress.com.
We present the first measurements of the projected clustering and intrinsic alignments (IA) of galaxies observed by the Physics of the Accelerating Universe Survey (PAUS). With photometry in 40 narrow optical passbands ($450rm{nm}-850rm{nm}$), the quality of photometric redshift estimation is $sigma_{z} sim 0.01(1 + z)$ for galaxies in the $19,rm{deg}^{2}$ Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) W3 field, allowing us to measure the projected 3D clustering and IA for flux-limited, faint galaxies ($i < 22.5$) out to $zsim0.8$. To measure two-point statistics, we developed, and tested with mock photometric redshift samples, `cloned random galaxy catalogues which can reproduce data selection functions in 3D and account for photometric redshift errors. In our fiducial colour-split analysis, we made robust null detections of IA for blue galaxies and tentative detections of radial alignments for red galaxies ($sim1-3sigma$), over scales of $0.1-18,h^{-1}rm{Mpc}$. The galaxy clustering correlation functions in the PAUS samples are comparable to their counterparts in a spectroscopic population from the Galaxy and Mass Assembly survey, modulo the impact of photometric redshift uncertainty which tends to flatten the blue galaxy correlation function, whilst steepening that of red galaxies. We investigate the sensitivity of our correlation function measurements to choices in the random catalogue creation and the galaxy pair-binning along the line of sight, in preparation for an optimised analysis over the full PAUS area.
The PAU Survey (PAUS) is an innovative photometric survey with 40 narrow bands at the William Herschel Telescope (WHT). The narrow bands are spaced at 100AA intervals covering the range 4500AA to 8500AA and, in combination with standard broad bands, enable excellent redshift precision. This paper describes the technique, galaxy templates and additional photometric calibration used to determine early photometric redshifts from PAUS. Using BCNz2, a new photometric redshift code developed for this purpose, we characterise the photometric redshift performance using PAUS data on the COSMOS field. Comparison to secure spectra from zCOSMOS DR3 shows that PAUS achieves $sigma_{68} /(1+z) = 0.0037$ to $i_{mathrm{AB}} < 22.5$ when selecting the best 50% of the sources based on a photometric redshift quality cut. Furthermore, a higher photo-z precision ($sigma_{68}/(1+z) sim 0.001$) is obtained for a bright and high quality selection, which is driven by the identification of emission lines. We conclude that PAUS meets its design goals, opening up a hitherto uncharted regime of deep, wide, and dense galaxy survey with precise redshifts that will provide unique insights into the formation, evolution and clustering of galaxies, as well as their intrinsic alignments.
Upcoming imaging surveys, such as LSST, will provide an unprecedented view of the Universe, but with limited resolution along the line-of-sight. Common ways to increase resolution in the third dimension, and reduce misclassifications, include observing a wider wavelength range and/or combining the broad-band imaging with higher spectral resolution data. The challenge with these approaches is matching the depth of these ancillary data with the original imaging survey. However, while a full 3D map is required for some science, there are many situations where only the statistical distribution of objects (dN/dz) in the line-of-sight direction is needed. In such situations, there is no need to measure the fluxes of individual objects in all of the surveys. Rather a stacking procedure can be used to perform an `ensemble photo-z. We show how a shallow, higher spectral resolution survey can be used to measure dN/dz for stacks of galaxies which coincide in a deeper, lower resolution survey. The galaxies in the deeper survey do not even need to appear individually in the shallow survey. We give a toy model example to illustrate tradeoffs and considerations for applying this method. This approach will allow deep imaging surveys to leverage the high resolution of spectroscopic and narrow/medium band surveys underway, even when the latter do not have the same reach to high redshift.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا