No Arabic abstract
The sulfur substituted FeSe system, FeSe$_{1-x}$S$_{x}$, provides a versatile platform for studying the relationship between nematicity, antiferromagnetism, and superconductivity. Here, by nuclear magnetic resonance (NMR) and resistivity measurements up to 4.73 GPa on FeSe$_{0.91}$S$_{0.09}$, we established the pressure($p$)-temperature($T$) phase diagram in which the nematic state is suppressed with pressure showing a nematic quantum phase transition (QPT) around $p$ = 0.5 GPa, two SC regions, separated by the QPT, appear and antiferromagnetic (AFM) phase emerges above $sim$3.3 GPa. From the NMR results up to 2.1 GPa, AFM fluctuations are revealed to be characterized by the stripe-type wavevector which remains the same for the two SC regions. Furthermore, the electronic state is found to change in character from non-Fermi liquid to Fermi liquid around the nematic QPT and persists up to $sim$ 2.1 GPa. In addition, although the AFM fluctuations correlate with $T_{rm c}$ in both SC states, demonstrating the importance of the AFM fluctuations for the appearance of SC in the system, we found that, when nematic order is absent, $T_{rm c}$ is strongly correlated with the AFM fluctuations, whereas $T_{rm c}$ weakly depends on the AFM fluctuations when nematic order is present. Our findings on FeSe$_{0.91}$S$_{0.09}$ were shown to be applied to the whole FeSe$_{1-x}$S$_{x}$ system and also provide a new insight into the relationship between AFM fluctuations and SC in Fe-based superconductors.
The mechanism behind the nematicity of FeSe is not known. Through elastoresitivity measurements it has been shown to be an electronic instability. However, so far measurements have extended only to small strains, where the response is linear. Here, we apply large elastic strains to FeSe, and perform two types of measurements. (1) Using applied strain to control twinning, the nematic resistive anisotropy at temperatures below the nematic transition temperature Ts is determined. (2) Resistive anisotropy is measured as nematicity is induced through applied strain at fixed temperature above Ts. In both cases, as nematicity strengthens the resistive anisotropy peaks about about 7%, then decreases. Below ~40 K, the nematic resistive anisotropy changes sign. We discuss possible implications of this behaviour for theories of nematicity. We report in addition: (1) Under experimentally accessible conditions with bulk crystals, stress, rather than strain, is the conjugate field to the nematicity of FeSe. (2) At low temperatures the twin boundary resistance is ~10% of the sample resistance, and must be properly subtracted to extract intrinsic resistivities. (3) Biaxial inplane compression increases both in-plane resistivity and the superconducting critical temperature Tc, consistent with a strong role of the yz orbital in the electronic correlations.
The interplay of orbital and spin degrees of freedom is the fundamental characteristic in numerous condensed matter phenomena, including high temperature superconductivity, quantum spin liquids, and topological semimetals. In iron-based superconductors (FeSCs), this causes superconductivity to emerge in the vicinity of two other instabilities: nematic and magnetic. Unveiling the mutual relationship among nematic order, spin fluctuations, and superconductivity has been a major challenge for research in FeSCs, but it is still controversial. Here, by carrying out 77Se nuclear magnetic resonance (NMR) measurements on FeSe single crystals, doped by cobalt and sulfur that serve as control parameters, we demonstrate that the superconducting transition temperature Tc increases in proportion to the strength of spin fluctuations, while it is independent of the nematic transition temperature Tnem. Our observation therefore directly implies that superconductivity in FeSe is essentially driven by spin fluctuations in the intermediate coupling regime, while nematic fluctuations have a marginal impact on Tc.
Strong interplay of spin and charge/orbital degrees of freedom is the fundamental characteristic of the iron-based superconductors (FeSCs), which leads to the emergence of a nematic state as a rule in the vicinity of the antiferromagnetic state. Despite intense debate for many years, however, whether nematicity is driven by spin or orbital fluctuations remains unsettled. Here, by use of transport, magnetization, and $^{75}$As nuclear magnetic resonance (NMR) measurements, we show a striking transformation of the relationship between nematicity and spin fluctuations (SFs) in Na$_{1-x}$Li$_x$FeAs; For $xleq 0.02$, the nematic transition promotes SFs. In contrast, for $xgeq 0.03$, the system undergoes a non-magnetic phase transition at a temperature $T_0$ into a distinct nematic state that suppresses SFs. Such a drastic change of the spin fluctuation spectrum associated with nematicity by small doping is highly unusual, and provides insights into the origin and nature of nematicity in FeSCs.
We show that, at weak to intermediate coupling, antiferromagnetic fluctuations enhance d-wave pairing correlations until, as one moves closer to half-filling, the antiferromagnetically-induced pseudogap begins to suppress the tendency to superconductivity. The accuracy of our approach is gauged by detailed comparisons with Quantum Monte Carlo simulations. The negative pressure dependence of Tc and the existence of photoemission hot spots in electron-doped cuprate superconductors find their natural explanation within this approach.
We report $^{115}$In nuclear-quadrupole-resonance (NQR) measurements of the pressure($P$)-induced superconductor CeRhIn$_5$ in the antiferromagnetic (AF) and superconducting (SC) states. In the AF region, the internal field $H_{int}$ at the In site is substantially reduced from $H_{int}=1.75$ kOe at P=0 to 0.39 kOe at $P=1.23$ GPa, while the Neel temperature slightly changes with increasing $P$. This suggests that either the size in the ordered moment $M_{Q}(P)$ or the angle $theta (P)$ between the direction of $M_{Q}(P)$ and the tetragonal $c$ axis is extrapolated to zero at $P^*=1.6 pm 0.1$ GPa at which a bulk SC transition is no longer emergent. In the SC state at $P=2.1$ GPa, the nuclear spin-lattice relaxation rate $^{115}(1/T_1)$ has revealed a $T^3$ dependence without the coherence peak just below $T_c$, giving evidence for the unconventional superconductivity. The dimensionality of the magnetic flutuations in the normal state are also discussed.