Do you want to publish a course? Click here

Quantum time crystals with programmable disorder in higher dimensions

128   0   0.0 ( 0 )
 Added by Jens Eisert
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present fresh evidence for the presence of discrete quantum time crystals in two spatial dimensions. Discrete time crystals are intricate quantum systems that break discrete time translation symmetry in driven quantum many-body systems undergoing non-equilibrium dynamics. They are stabilized by many-body localization arising from disorder. We directly target the thermodynamic limit using instances of infinite tensor network states and implement disorder in a translationally invariant setting by introducing auxiliary systems at each site. We discuss how such disorder can be realized in programmable quantum simulators: This gives rise to the interesting situation in which a classical tensor network simulation can contribute to devising a blueprint of a quantum simulator featuring pre-thermal time crystalline dynamics, one that will yet ultimately have to be built in order to explore the stability of this phase of matter for long times.



rate research

Read More

Crystals arise as the result of the breaking of a spatial translation symmetry. Similarly, translation symmetries can also be broken in time so that discrete time crystals appear. Here, we introduce a method to describe, characterize, and explore the physical phenomena related to this phase of matter using tools from graph theory. The analysis of the graphs allows to visualizing time-crystalline order and to analyze features of the quantum system. For example, we explore in detail the melting process of a minimal model of a period-2 discrete time crystal and describe it in terms of the evolution of the associated graph structure. We show that during the melting process, the network evolution exhibits an emergent preferential attachment mechanism, directly associated with the existence of scale-free networks. Thus, our strategy allows us to propose a previously unexplored far-reaching application of time crystals as a quantum simulator of complex quantum networks.
We consider paradigmatic quenched disordered quantum spin models, viz., the XY spin glass and random-field XY models, and show that quenched averaged quantum correlations can exhibit the order-from-disorder phenomenon for finite-size systems as well as in the thermodynamic limit. Moreover, we find that the order-from-disorder can get more pronounced in the presence of temperature by suitable tuning of the system parameters. The effects are found for entanglement measures as well as for information-theoretic quantum correlation ones, although the former show them more prominently. We also observe that the equivalence between the quenched averages and their self-averaged cousins -- for classical and quantum correlations -- is related to the quantum critical point in the corresponding ordered system.
The discrete time crystal (DTC) is a recently discovered phase of matter that spontaneously breaks time-translation symmetry. Disorder-induced many-body-localization is required to stabilize a DTC to arbitrary times, yet an experimental investigation of this localized regime has proven elusive. Here, we observe the hallmark signatures of a many-body-localized DTC using a novel quantum simulation platform based on individually controllable $^{13}$C nuclear spins in diamond. We demonstrate the characteristic long-lived spatiotemporal order and confirm that it is robust for generic initial states. Our results are consistent with the realization of an out-of-equilibrium Floquet phase of matter and establish a programmable quantum simulator based on solid-state spins for exploring many-body physics.
Current quantum devices execute specific tasks that are hard for classical computers and have the potential to solve problems such as quantum simulation of material science and chemistry, even without error correction. For practical applications it is highly desirable to reconfigure the connectivity of the device, which for superconducting quantum processors is determined at fabrication. In addition, we require a careful design of control lines and couplings to resonators for measurements. Therefore, it is a cumbersome and slow undertaking to fabricate a new device for each problem we want to solve. Here we periodically drive a one-dimensional chain to engineer effective Hamiltonians that simulate arbitrary connectivities. We demonstrate the capability of our method by engineering driving sequences to simulate star, all-to-all, and ring connectivities. We also simulate a minimal example of the 3-SAT problem including three-body interactions, which are difficult to realize experimentally. Our results open a new paradigm to perform quantum simulation in near term quantum devices by enabling us to stroboscopically simulate arbitrary Hamiltonians with a single device and optimized driving sequences
We demonstrate that the prethermal regime of periodically-driven, classical many-body systems can host non-equilibrium phases of matter. In particular, we show that there exists an effective Hamiltonian, which captures the dynamics of ensembles of classical trajectories, despite the breakdown of this description at the single trajectory level. In addition, we prove that the effective Hamiltonian can host emergent symmetries protected by the discrete time-translation symmetry of the drive. The spontaneous breaking of such an emergent symmetry leads to a sub-harmonic response, characteristic of time crystalline order, that survives to exponentially late times. To this end, we numerically demonstrate the existence of prethermal time crystals in both a one-dimensional, long-range interacting spin chain and a nearest-neighbor spin model on a two-dimensional square lattice.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا