Kinetic modeling of the electric double layer at a dielectric plasma-solid interface


Abstract in English

For a collisionless plasma in contact with a dielectric surface, where with unit probability electrons and ions are, respectively, absorbed and neutralized, thereby injecting electrons and holes into the conduction and valence band, we study the kinetics of plasma loss by nonradiative electron-hole recombination inside the dielectric. We obtain a self-consistently embedded electric double layer, merging with the quasi-neutral, field-free regions inside the plasma and the solid. After a description of the numerical scheme for solving the two sets of Boltzmann equations, one for the electrons and ions of the plasma and one for the electrons and holes of the solid, to which this transport problem gives rise to, we present numerical results for a p-doped dielectric. Besides potential, density, and flux profiles, plasma-induced changes in the electron and hole distribution functions are discussed, from which a microscopic view on plasma loss inside the dielectric emerges.

Download