No Arabic abstract
In many applications labeled data is not readily available, and needs to be collected via pain-staking human supervision. We propose a rule-exemplar method for collecting human supervision to combine the efficiency of rules with the quality of instance labels. The supervision is coupled such that it is both natural for humans and synergistic for learning. We propose a training algorithm that jointly denoises rules via latent coverage variables, and trains the model through a soft implication loss over the coverage and label variables. The denoised rules and trained model are used jointly for inference. Empirical evaluation on five different tasks shows that (1) our algorithm is more accurate than several existing methods of learning from a mix of clean and noisy supervision, and (2) the coupled rule-exemplar supervision is effective in denoising rules.
Despite the success of deep neural networks (DNNs) in image classification tasks, the human-level performance relies on massive training data with high-quality manual annotations, which are expensive and time-consuming to collect. There exist many inexpensive data sources on the web, but they tend to contain inaccurate labels. Training on noisy labeled datasets causes performance degradation because DNNs can easily overfit to the label noise. To overcome this problem, we propose a noise-tolerant training algorithm, where a meta-learning update is performed prior to conventional gradient update. The proposed meta-learning method simulates actual training by generating synthetic noisy labels, and train the model such that after one gradient update using each set of synthetic noisy labels, the model does not overfit to the specific noise. We conduct extensive experiments on the noisy CIFAR-10 dataset and the Clothing1M dataset. The results demonstrate the advantageous performance of the proposed method compared to several state-of-the-art baselines.
Before deploying autonomous agents in the real world, we need to be confident they will perform safely in novel situations. Ideally, we would expose agents to a very wide range of situations during training, allowing them to learn about every possible danger, but this is often impractical. This paper investigates safety and generalization from a limited number of training environments in deep reinforcement learning (RL). We find RL algorithms can fail dangerously on unseen test environments even when performing perfectly on training environments. Firstly, in a gridworld setting, we show that catastrophes can be significantly reduced with simple modifications, including ensemble model averaging and the use of a blocking classifier. In the more challenging CoinRun environment we find similar methods do not significantly reduce catastrophes. However, we do find that the uncertainty information from the ensemble is useful for predicting whether a catastrophe will occur within a few steps and hence whether human intervention should be requested.
Quantitative analysis of cell nuclei in microscopic images is an essential yet challenging source of biological and pathological information. The major challenge is accurate detection and segmentation of densely packed nuclei in images acquired under a variety of conditions. Mask R-CNN-based methods have achieved state-of-the-art nucleus segmentation. However, the current pipeline requires fully annotated training images, which are time consuming to create and sometimes noisy. Importantly, nuclei often appear similar within the same image. This similarity could be utilized to segment nuclei with only partially labeled training examples. We propose a simple yet effective region-proposal module for the current Mask R-CNN pipeline to perform few-exemplar learning. To capture the similarities between unlabeled regions and labeled nuclei, we apply decomposed self-attention to learned features. On the self-attention map, we observe strong activation at the centers and edges of all nuclei, including unlabeled nuclei. On this basis, our region-proposal module propagates partial annotations to the whole image and proposes effective bounding boxes for the bounding box-regression and binary mask-generation modules. Our method effectively learns from unlabeled regions thereby improving detection performance. We test our method with various nuclear images. When trained with only 1/4 of the nuclei annotated, our approach retains a detection accuracy comparable to that from training with fully annotated data. Moreover, our method can serve as a bootstrapping step to create full annotations of datasets, iteratively generating and correcting annotations until a predetermined coverage and accuracy are reached. The source code is available at https://github.com/feng-lab/nuclei.
Neural architecture search (NAS) has advanced significantly in recent years but most NAS systems restrict search to learning architectures of a recurrent or convolutional cell. In this paper, we extend the search space of NAS. In particular, we present a general approach to learn both intra-cell and inter-cell architectures (call it ESS). For a better search result, we design a joint learning method to perform intra-cell and inter-cell NAS simultaneously. We implement our model in a differentiable architecture search system. For recurrent neural language modeling, it outperforms a strong baseline significantly on the PTB and WikiText data, with a new state-of-the-art on PTB. Moreover, the learned architectures show good transferability to other systems. E.g., they improve state-of-the-art systems on the CoNLL and WNUT named entity recognition (NER) tasks and CoNLL chunking task, indicating a promising line of research on large-scale pre-learned architectures.
Continual learning systems will interact with humans, with each other, and with the physical world through time -- and continue to learn and adapt as they do. An important open problem for continual learning is a large-scale benchmark that enables realistic evaluation of algorithms. In this paper, we study a natural setting for continual learning on a massive scale. We introduce the problem of personalized online language learning (POLL), which involves fitting personalized language models to a population of users that evolves over time. To facilitate research on POLL, we collect massive datasets of Twitter posts. These datasets, Firehose10M and Firehose100M, comprise 100 million tweets, posted by one million users over six years. Enabled by the Firehose datasets, we present a rigorous evaluation of continual learning algorithms on an unprecedented scale. Based on this analysis, we develop a simple algorithm for continual gradient descent (ConGraD) that outperforms prior continual learning methods on the Firehose datasets as well as earlier benchmarks. Collectively, the POLL problem setting, the Firehose datasets, and the ConGraD algorithm enable a complete benchmark for reproducible research on web-scale continual learning.