No Arabic abstract
We perform multiwavelength time-distance analysis of a fan loop system anchored in an isolated sunspot region AR 12553. The active region was observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. We measure the phase speeds of the propagating intensity disturbances by employing cross-correlation analysis, as well as by obtaining the slopes in xt-plots. We obtain original as well as de-trended light curves at different heights of the time-distance maps and characterize them by performing Fourier and Wavelet analysis, respectively. The time-distance maps reveal clear propagation of intensity oscillations in all the coronal EUV channels except AIA 94 and 335~{AA}. We determine the nature of the intensity disturbances as slow magnetoacoustic waves by measuring their phase speeds. The time-distance maps, as well as the de-trended light curves, show an increase and decrease in the amplitude of propagating 3-min oscillations over time. The amplitude variations appear most prominent in AIA 171~{AA}, though other EUV channels also show such signatures. Fourier power spectrum yield the presence of significant powers with several nearby frequencies between 2--3 minutes (5--8 mHz), along with many other smaller peaks between 2--4 minutes. Wavelet analysis shows an increase and decrease of oscillating power around 3-min simultaneous to the amplitude variations. We obtain the modulation period to be in the range of 20--30 minutes. Our results provide the viability of occurrence of phenomenon like `Beat among the nearby frequencies giving rise to the observed amplitude modulation. However, we cannot, at this stage, rule out the possibility that the modulation may be driven by variability of an underlying unknown source.
A comprehensive study of the physical parameters of active region fan loops is presented using the observations recorded with the Interface Region Imaging Spectrometer (IRIS), the EUV Imaging Spectrometer (EIS) on-board Hinode and the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) on-board the Solar Dynamics Observatory (SDO). The fan loops emerging from non-flaring AR~11899 (near the disk-center) on 19th November, 2013 are clearly discernible in AIA 171~{AA} images and those obtained in ion{Fe}{8} and ion{Si}{7} images using EIS. Our measurements of electron densities reveal that the footpoints of these loops are approximately at constant pressure with electron densities of $log,N_{e}=$ 10.1 cm$^{-3}$ at $log,[T/K]=5.15$ (ion{O}{4}), and $log,N_{e}=$ 8.9 cm$^{-3}$ at $log,[T/K]=6.15$ (ion{Si}{10}). The electron temperature diagnosed across the fan loops by means of EM-Loci suggest that at the footpoints, there are two temperature components at $log,[T/K]=4.95$ and 5.95, which are picked-up by IRIS lines and EIS lines respectively. At higher heights, the loops are nearly isothermal at $log,[T/K]=5.95$, that remained constant along the loop. The measurement of Doppler shift using IRIS lines suggests that the plasma at the footpoints of these loops is predominantly redshifted by 2-3~km~s$^{-1}$ in ion{C}{2}, 10-15~km~s$^{-1}$ in ion{Si}{4} and $~$15{--}20~km~s$^{-1}$ in ion{O}{4}, reflecting the increase in the speed of downflows with increasing temperature from $log,[T/K]=4.40$ to 5.15. These observations can be explained by low frequency nanoflares or impulsive heating, and provide further important constraints on the modeling of the dynamics of fan loops.
We present an analysis of off-limb cool flare loops observed by SDO/AIA during the gradual phase of SOL2017-09-10T16:06 X8.2-class flare. In the EUV channels starting from the 335 {AA} one, cool loops appear as dark structures against the bright loop arcade. These dark structures were precisely coaligned (spatially and temporally) with loops observed by SST in emission lines of hydrogen and ionized calcium. Recently published semi-empirical model of cool loops based on SST observations serves us to predict the level of hydrogen and helium recombination continua. The continua were synthesized using an approximate non-LTE approach and theoretical spectra were then transformed to AIA signals. Comparison with signals detected inside the dark loops shows that only in AIA 211 {AA} channel the computed level of recombination continua is consistent with observations for some models, while in all other channels which are more distant from the continua edges the synthetic continuum is far too low. In analogy with on-disk observations of flares we interpret the surplus emission as due to numerous EUV lines emitted from hot but faint loops in front of the cool ones. Finally we briefly comment on failure of the standard absorption model when used for analysis of the dark-loop brightness.
In this paper, we carry out multiwavelength observations of three recurring jets on 2014 November 7. The jets originated from the same region at the edge of AR 12205 and propagated along the same coronal loop. The eruptions were generated by magnetic reconnection, which is evidenced by continuous magnetic cancellation at the jet base. The projected initial velocity of the jet2 is 402 km s. The accelerations in the ascending and descending phases of jet2 are not consistent, the former is considerably larger than the value of solar gravitational acceleration at the solar surface, while the latter is lower than solar gravitational acceleration. There are two possible candidates of extra forces acting on jet2 during its propagation. One is the downward gas pressure from jet1 when it falls back and meets with jet2. The other is the viscous drag from the surrounding plasma during the fast propagation of jet2. As a contrast, the accelerations of jet3 in the rising and falling phases are constant, implying that the propagation of jet3 is not significantly influenced byextra forces.
We present plasma diagnostics of an EIT wave observed with high cadence in Hinode/EIS sit-and-stare spectroscopy and SDO/AIA imagery obtained during the HOP-180 observing campaign on 2011 February 16. At the propagating EIT wave front, we observe downward plasma flows in the EIS Fe XII, Fe XIII, and Fe XVI spectral lines (log T ~ 6.1-6.4) with line-of-sight (LOS) velocities up to 20 km/s. These red-shifts are followed by blue-shifts with upward velocities up to -5 km/s indicating relaxation of the plasma behind the wave front. During the wave evolution, the downward velocity pulse steepens from a few km/s up to 20 km/s and subsequently decays, correlated with the relative changes of the line intensities. The expected increase of the plasma densities at the EIT wave front estimated from the observed intensity increase lies within the noise level of our density diagnostics from EIS XIII 202/203 AA line ratios. No significant LOS plasma motions are observed in the He II line, suggesting that the wave pulse was not strong enough to perturb the underlying chromosphere. This is consistent with the finding that no Halpha Moreton wave was associated with the event. The EIT wave propagating along the EIS slit reveals a strong deceleration of a ~ -540 m/s2 and a start velocity of v0 ~ 590 km/s. These findings are consistent with the passage of a coronal fast-mode MHD wave, pushing the plasma downward and compressing it at the coronal base.
Taking advantage of both the high temporal and spatial resolution of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO), we studied a limb coronal shock wave and its associated extreme ultraviolet (EUV) wave that occurred on 2010 June 13. Our main findings are (1) the shock wave appeared clearly only in the channels centered at 193 AA and 211 AA as a dome-like enhancement propagating ahead of its associated semi-spherical CME bubble; (2) the density compression of the shock is 1.56 according to radio data and the temperature of the shockis around 2.8 MK; (3) the shock wave first appeared at 05:38 UT, 2 minutes after the associated flare has started and 1 minute after its associated CME bubble appeared;(4) the top of the dome-like shock wave set out from about 1.23 Rodot and the thickness of the shocked layer is ~ 2times10^4 km; (5) the speed of the shock wave is consistent with a slight decrease from about 600 km/s to 550 km/s; (6) the lateral expansion of the shock wave suggests a constant speed around 400 km/s, which varies at different heights and directions. Our findings support the view that the coronal shock wave is driven by the CME bubble, and the on-limb EUV wave is consistent with a fast wave or at least includes the fast wave component.