No Arabic abstract
This paper proposes a deep-learning-based domain decomposition method (DeepDDM), which leverages deep neural networks (DNN) to discretize the subproblems divided by domain decomposition methods (DDM) for solving partial differential equations (PDE). Using DNN to solve PDE is a physics-informed learning problem with the objective involving two terms, domain term and boundary term, which respectively make the desired solution satisfy the PDE and corresponding boundary conditions. DeepDDM will exchange the subproblem information across the interface in DDM by adjusting the boundary term for solving each subproblem by DNN. Benefiting from the simple implementation and mesh-free strategy of using DNN for PDE, DeepDDM will simplify the implementation of DDM and make DDM more flexible for complex PDE, e.g., those with complex interfaces in the computational domain. This paper will firstly investigate the performance of using DeepDDM for elliptic problems, including a model problem and an interface problem. The numerical examples demonstrate that DeepDDM exhibits behaviors consistent with conventional DDM: the number of iterations by DeepDDM is independent of network architecture and decreases with increasing overlapping size. The performance of DeepDDM on elliptic problems will encourage us to further investigate its performance for other kinds of PDE and may provide new insights for improving the PDE solver by deep learning.
In this paper, we propose a deep unfitted Nitsche method for computing elliptic interface problems with high contrasts in high dimensions. To capture discontinuities of the solution caused by interfaces, we reformulate the problem as an energy minimization involving two weakly coupled components. This enables us to train two deep neural networks to represent two components of the solution in high-dimensional. The curse of dimensionality is alleviated by using the Monte-Carlo method to discretize the unfitted Nitsche energy function. We present several numerical examples to show the efficiency and accuracy of the proposed method.
We introduce an adaptive element-based domain decomposition (DD) method for solving saddle point problems defined as a block two by two matrix. The algorithm does not require any knowledge of the constrained space. We assume that all sub matrices are sparse and that the diagonal blocks are spectrally equivalent to a sum of positive semi definite matrices. The latter assumption enables the design of adaptive coarse space for DD methods that extends the GenEO theory to saddle point problems. Numerical results on three dimensional elasticity problems for steel-rubber structures discretized by a finite element with continuous pressure are shown for up to one billion degrees of freedom.
In this paper, we propose a novel overlapping domain decomposition method that can be applied to various problems in variational imaging such as total variation minimization. Most of recent domain decomposition methods for total variation minimization adopt the Fenchel--Rockafellar duality, whereas the proposed method is based on the primal formulation. Thus, the proposed method can be applied not only to total variation minimization but also to those with complex dual problems such as higher order models. In the proposed method, an equivalent formulation of the model problem with parallel structure is constructed using a custom overlapping domain decomposition scheme with the notion of essential domains. As a solver for the constructed formulation, we propose a decoupled augmented Lagrangian method for untying the coupling of adjacent subdomains. Convergence analysis of the decoupled augmented Lagrangian method is provided. We present implementation details and numerical examples for various model problems including total variation minimizations and higher order models.
We propose a domain decomposition method for the efficient simulation of nonlocal problems. Our approach is based on a multi-domain formulation of a nonlocal diffusion problem where the subdomains share nonlocal interfaces of the size of the nonlocal horizon. This system of nonlocal equations is first rewritten in terms of minimization of a nonlocal energy, then discretized with a meshfree approximation and finally solved via a Lagrange multiplier approach in a way that resembles the finite element tearing and interconnect method. Specifically, we propose a distributed projected gradient algorithm for the solution of the Lagrange multiplier system, whose unknowns determine the nonlocal interface conditions between subdomains. Several two-dimensional numerical tests illustrate the strong and weak scalability of our algorithm, which outperforms the standard approach to the distributed numerical solution of the problem. This work is the first rigorous numerical study in a two-dimensional multi-domain setting for nonlocal operators with finite horizon and, as such, it is a fundamental step towards increasing the use of nonlocal models in large scale simulations.
We design an adaptive unfitted finite element method on the Cartesian mesh with hanging nodes. We derive an hp-reliable and efficient residual type a posteriori error estimate on K-meshes. A key ingredient is a novel hp-domain inverse estimate which allows us to prove the stability of the finite element method under practical interface resolving mesh conditions and also prove the lower bound of the hp a posteriori error estimate. Numerical examples are included.