Speed of sound from fundamental physical constants


Abstract in English

Two dimensionless fundamental physical constants, the fine structure constant $alpha$ and the proton-to-electron mass ratio $frac{m_p}{m_e}$ are attributed a particular importance from the point of view of nuclear synthesis, formation of heavy elements, planets, and life-supporting structures. Here, we show that a combination of these two constants results in a new dimensionless constant which provides the upper bound for the speed of sound in condensed phases, $v_u$. We find that $frac{v_u}{c}=alphaleft(frac{m_e}{2m_p}right)^{frac{1}{2}}$, where $c$ is the speed of light in vacuum. We support this result by a large set of experimental data and first principles computations for atomic hydrogen. Our result expands current understanding of how fundamental constants can impose new bounds on important physical properties.

Download