No Arabic abstract
Two dimensionless fundamental physical constants, the fine structure constant $alpha$ and the proton-to-electron mass ratio $frac{m_p}{m_e}$ are attributed a particular importance from the point of view of nuclear synthesis, formation of heavy elements, planets, and life-supporting structures. Here, we show that a combination of these two constants results in a new dimensionless constant which provides the upper bound for the speed of sound in condensed phases, $v_u$. We find that $frac{v_u}{c}=alphaleft(frac{m_e}{2m_p}right)^{frac{1}{2}}$, where $c$ is the speed of light in vacuum. We support this result by a large set of experimental data and first principles computations for atomic hydrogen. Our result expands current understanding of how fundamental constants can impose new bounds on important physical properties.
Viscosity of fluids is strongly system-dependent, varies across many orders of magnitude and depends on molecular interactions and structure in a complex way not amenable to first-principles theories. Despite the variations and theoretical difficulties, we find a new quantity setting the minimal kinematic viscosity of fluids: $ u_m=frac{1}{4pi}frac{hbar}{sqrt{m_em}}$, where $m_e$ and $m$ are electron and molecule masses. We subsequently introduce a new property, the elementary viscosity $iota$ with the lower bound set by fundamental physical constants and notably involving the proton-to-electron mass ratio: $iota_m=frac{hbar}{4pi}left({frac{m_p}{m_e}}right)^{frac{1}{2}}$, where $m_p$ is the proton mass. We discuss the connection of our result to the bound found by Kovtun, Son and Starinets in strongly-interacting field theories.
The temperature dependent effective potential (TDEP) method is generalized beyond pair interactions. The second and third order force constants are determined consistently from ab initio molecular dynamics simulations at finite temperature. The reliability of the approach is demonstrated by calculations of the Mode Gruneisen parameters for Si. We show that the extension of TDEP to higher order allows for an efficient calculation of the phonon life time, in Si as well as in $epsilon$-FeSi, a system that exhibits anomalous softening with temperature.
The location-scale model is usually present in physics and chemistry in connection to the Birge ratio method for the adjustment of fundamental physical constants such as the Planck constant or the Newtonian constant of gravitation, while the random effects model is the commonly used approach for meta-analysis in medicine. These two competitive models are used to increase the quoted uncertainties of the measurement results to make them consistent. The intrinsic Bayes factor (IBF) is derived for the comparison of the random effects model to the location-scale model, and we answer the question which model performs better for the determination of the Newtonian constant of gravitation. The results of the empirical illustration support the application of the Birge ratio method which is currently used in the adjustment of the CODATA 2018 value for the Newtonian constant of gravitation together with its uncertainty. The results of the simulation study illustrate that the suggested procedure for model selection is decisive even when data consist of a few measurement results.
We survey the application of a relatively new branch of statistical physics--community detection-- to data mining. In particular, we focus on the diagnosis of materials and automated image segmentation. Community detection describes the quest of partitioning a complex system involving many elements into optimally decoupled subsets or communities of such elements. We review a multiresolution variant which is used to ascertain structures at different spatial and temporal scales. Significant patterns are obtained by examining the correlations between different independent solvers. Similar to other combinatorial optimization problems in the NP complexity class, community detection exhibits several phases. Typically, illuminating orders are revealed by choosing parameters that lead to extremal information theory correlations.
This paper develops the use of wavelets as a basis set for the solution of physical problems exhibiting behavior over wide-ranges in length scale. In a simple diagrammatic language, this article reviews both the mathematical underpinnings of wavelet theory and the algorithms behind the fast wavelet transform. This article underscores the fact that traditional wavelet bases are fundamentally ill-suited for physical calculations and shows how to go beyond these limitations by the introduction of the new concept of semicardinality, which leads to the profound, new result that basic physical couplings may be computed {em without approximatation} from very sparse information, thereby overcoming the limitations of traditional wavelet bases in the treatment of physical problems. The paper then explores the convergence rate of conjugate gradient solution of the Poisson equation in both semicardinal and lifted wavelet bases and shows the first solution of the Kohn-Sham equations using a novel variational principle.