Do you want to publish a course? Click here

Quasi-nondegenerate pump-probe magnetooptical experiment in GaAs/AlGaAs heterostructure based on spectral filtration

85   0   0.0 ( 0 )
 Added by Petr Nemec
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on a quasi-nondegenerate pump-probe technique that is based on spectral-filtration of femtosecond laser pulses by a pair of mutually-spectrally-disjunctive interference filters. This cost- and space-efficient approach can be used even in pump-probe microscopy where collinear propagation of pump and probe pulses is dictated by utilization of a microscopic objective. This technique solves the contradictory requirements on an efficient removal of pump photons from the probe beam, to achieve a good signal-to-noise ratio, simultaneously with a needed spectral proximity of the excitation and probing, which is essential for magnetooptical study of many material systems. Importantly, this spectral-filtration of 100 fs long laser pulses does not affect considerably the resulting time-resolution, which remains well below 500 fs. We demonstrate the practical applicability of this technique with close but distinct wavelengths of pump and probe pulses in spatially- and time-resolved spin-sensitive magnetooptical Kerr effect (MOKE) experiment in GaAs/AlGaAs heterostructure, where a high-mobility spin system is formed after optical injection of electrons at wavelengths close to MOKE resonance. In particular, we studied the time- and spatial-evolutions of charge-related (reflectivity) and spin-related (MOKE) signals. We revealed that they evolve in a similar but not exactly the same way which we attributed to interplay of several electron many-body effects in GaAs.

rate research

Read More

377 - O. S. Ken 2020
The effect of a lateral electric current on the photoluminescence H-band of an AlGaAs/GaAs heterostructure is investigated. The photoluminescence intensity and optical orientation of electrons contributing to the H-band are studied by means of continuous wave and time-resolved photoluminescence spectroscopy and time-resolved Kerr rotation. It is shown that the H-band is due to recombination of the heavy holes localized at the heterointerface with photoexcited electrons attracted to the heterointerface from the GaAs layer. Two lines with significantly different decay times constitute the H-band: a short-lived high-energy one and a long-lived low-energy one. The high-energy line originates from recombination of electrons freely moving along the structure plane, while the low-energy one is due to recombination of donor-bound electrons near the interface. Application of the lateral electric field of ~ 100-200 V/cm results in a quenching of both lines. This quenching is due to a decrease of electron concentration near the heterointerface as a result of a photocurrent-induced heating of electrons in the GaAs layer. On the contrary, electrons near the heterointerface are effectively cooled, so the donors near the interface are not completely empty up to ~ 100 V/cm, which is in stark contrast with the case of bulk materials. The optical spin polarization of the donor-bound electrons near the heterointerface weakly depends on the electric field. Their polarization kinetics is determined by the spin dephasing in the hyperfine fields of the lattice nuclei. The long spin memory time (> 40 ns) can be associated with suppression of the Bir-Aronov-Pikus mechanism of spin relaxation for electrons.
We have fabricated AlGaAs/GaAs heterostructure devices in which the conduction channel can be populated with either electrons or holes simply by changing the polarity of a gate bias. The heterostructures are entirely undoped, and carriers are instead induced electrostatically. We use these devices to perform a direct comparison of the scattering mechanisms of two-dimensional (2D) electrons ($mu_textrm{peak}=4times10^6textrm{cm}^2/textrm{Vs}$) and holes ($mu_textrm{peak}=0.8times10^6textrm{cm}^2/textrm{Vs}$) in the same conduction channel with nominally identical disorder potentials. We find significant discrepancies between electron and hole scattering, with the hole mobility being considerably lower than expected from simple theory.
We compare the observed strong saturation of the free carrier absorption in n-type semiconductors at 300 K in the terahertz frequency range when single-cycle pulses with intensities up to 150 MW/cm2 are used. In the case of germanium, a small increase of the absorption occurs at intermediate THz pulse energies. The recovery of the free carrier absorption was monitored by time-resolved THz-pump/THz-probe measurements. At short probe delay times, the frequency response of germanium cannot be fitted by the Drude model. We attribute these unique phenomena of Ge to dynamical overpopulation of the high mobility gamma conduction band valley.
We explore the nature of the electroluminescence (EL) emission of purely n-doped GaAs/AlGaAs resonant tunneling diodes (RTDs) and the EL evolution with voltage. A singular feature of such a device is unveiled when the electrical output current changes from high to low and the EL on-off ratio is enhanced by 2 orders of magnitude compared to the current on-off ratio. By combining the EL and current properties, we are able to identify two independent impact ionization channels associated with the coherent resonant tunneling current and the incoherent valley current. We also perform the same investigation with an associated series resistance, which induces a bistable electrical output in the system. By simulating a resistance variation for the current-voltage and the EL, we are able to tune the EL on-off ratio by up to 6 orders of magnitude. We further observe that the EL on and off states can be either direct or inverted compared to the tunneling current on and off states. This electroluminescence, combined with the unique RTD properties such as the negative differential resistance (NDR) and high frequency operation, enables the development of high speed functional opto-electronic devices and optical switches.
We have realized quantized charge pumping using non-adiabatic single-electron pumps in dopant-free GaAs two-dimensional electron gases (2DEGs). The dopant-free III-V platform allows for ambipolar devices, such as p-i-n junctions, that could be combined with such pumps to form electrically-driven single photon sources. Our pumps operate at up to 0.95 GHz and achieve remarkable performance considering the relaxed experimental conditions: one-gate pumping in zero magnetic field and temperatures up to 5K, driven by a simple RF sine waveform. Fitting to a universal decay cascade model yields values for the figure of merit $delta$ that compare favorably to reported modulation-doped GaAs pumps operating under similar conditions. The devices reported here are already suitable for optoelectronics applications, and with further improvement could offer a route to a current standard that does not require sub-Kelvin temperatures and high magnetic fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا