No Arabic abstract
Using a 3D general circulation model (GCM), we investigate the sensitivity of the climate of tidally-locked Earth-like exoplanets, Trappist-1e and Proxima Centauri b, to the choice of a convection parameterization. Compared to a mass-flux convection parameterization, a simplified convection adjustment parameterization leads to a $>$60% decrease of the cloud albedo, increasing the mean day-side temperature by $approx$10 K. The representation of convection also affects the atmospheric conditions of the night side, via a change in planetary-scale wave patterns. As a result, using the convection adjustment scheme makes the night-side cold traps warmer by 17-36 K for the planets in our simulations. The day-night thermal contrast is sensitive to the representation of convection in 3D GCM simulations, so caution should be taken when interpreting emission phase curves. The choice of convection treatment, however, does not alter the simulated climate enough to result in a departure from habitable conditions, at least for the atmospheric composition and planetary parameters used in our study. The near-surface conditions both in the Trappist-1e and Proxima b cases remain temperate, allowing for an active water cycle. We further advance our analysis using high-resolution model experiments, in which atmospheric convection is simulated explicitly. Our results suggest that in a hypothetical global convection-permitting simulation the surface temperature contrast would be higher than in the coarse-resolution simulations with parameterized convection. In other words, models with parameterized convection may overestimate the inter-hemispheric heat redistribution efficiency.
Using an idealised general circulation model, we investigate the atmospheric circulation of Earth-like terrestrial planets in a variety of orbital configurations. We relax the common assumption of the planet being tidally-locked, and look at the role atmospheric dynamics can have in the observed thermal phase curve when the substellar point is non-stationary. In slowly rotating planets, a moving forcing can induce strong jets in the upper troposphere, both prograde and retrograde, sensitive to the speed and direction of the diurnal forcing. We find that, consistent with previous shallow water model experiments, the thermal phase curve offset is sensitive to the velocity of the substellar point moving across the surface of the planet. For a planet with a known orbital period, the results show that the observed hotspot on the planet could be either east or west of the substellar point, depending on whether the planet is tidally-locked or not.
A large fraction of known terrestrial-size exoplanets located in the Habitable Zone of M-dwarfs are expected to be tidally-locked. Numerous efforts have been conducted to study the climate of such planets, using in particular 3-D Global Climate Models (GCM). One of the biggest challenges in simulating such an extreme environment is to properly represent the effects of sub-grid convection. Most GCMs use either a simplistic convective-adjustment parametrization or sophisticated (e.g., mass flux scheme) Earth-tuned parametrizations. One way to improve the representation of convection is to study convection using Convection Resolving numerical Models (CRMs), with an fine spatial resolution . In this study, we developed a CRM coupling the non-hydrostatic dynamical core WRF with the radiative transfer and cloud/precipitation models of the LMD-Generic climate model to study convection and clouds on tidally-locked planets, with a focus on Proxima b. Simulations were performed for a set of 3 surface temperatures (corresponding to three different incident fluxes) and 2 rotation rates, assuming an Earth-like atmosphere. The main result of our study is that while we recover the prediction of GCMs that (low-altitude) cloud albedo increases with increasing stellar flux, the cloud feedback is much weaker due to transient aggregation of convection leading to low partial cloud cover.
The majority of potentially habitable exoplanets detected orbit stars cooler than the Sun, and therefore are irradiated by a stellar spectrum peaking at longer wavelengths than that incident on Earth. Here, we present results from a set of simulations of tidally-locked terrestrial planets orbiting three different host stars to isolate the effect of the stellar spectra on the simulated climate. Specifically, we perform simulations based on TRAPPIST-1e, adopting an Earth-like atmosphere and using the UK Met Office Unified Model in an idealised aqua-planet configuration. Whilst holding the planetary parameters constant, including the total stellar flux (900 W/m$^2$) and orbital period (6.10 Earth days), we compare results between simulations where the stellar spectrum is that of a quiescent TRAPPIST-1, Proxima Centauri and the Sun. The simulations with cooler host stars had an increased proportion of incident stellar radiation absorbed directly by the troposphere compared to the surface. This, in turn, led to an increase in the stability against convection, a reduction in overall cloud coverage on the dayside (reducing scattering), leading to warmer surface temperatures. The increased direct heating of the troposphere also led to more efficient heat transport from the dayside to the nightside and, therefore, a reduced day-night temperature contrast. We inferred that planets with an Earth-like atmosphere orbiting cooler stars had lower dayside cloud coverage, potentially allowing habitable conditions at increased orbital radii, compared to similar planets orbiting hotter stars for a given planetary rotation rate.
Previous studies have demonstrated that continental carbon-silicate weathering is important to the continued habitability of a terrestrial planet. Despite this, few studies have considered the influence of land on the climate of a tidally-locked planet. In this work we use the Met Office Unified Model, coupled to a land surface model, to investigate the climate effects of a continent located at the sub-stellar point. We choose to use the orbital and planetary parameters of Proxima Centauri B as a template, to allow comparison with the work of others. A region of the surface where $T_{text{s}} > 273.15,text{K}$ is always retained, and previous conclusions on the habitability of Proxima Centauri B remain intact. We find that sub-stellar land causes global cooling, and increases day-night temperature contrasts by limiting heat redistribution. Furthermore, we find that sub-stellar land is able to introduce a regime change in the atmospheric circulation. Specifically, when a continent offset to the east of the sub-stellar point is introduced, we observe the formation of two mid-latitude counterrotating jets, and a substantially weakened equatorial superrotating jet.
Using a shallow water model with time-dependent forcing we show that the peak of an exoplanet thermal phase curve is, in general, offset from secondary eclipse when the planet is rotating. That is, the planetary hot-spot is offset from the point of maximal heating (the substellar point) and may lead or lag the forcing; the extent and sign of the offset is a function of both the rotation rate and orbital period of the planet. We also find that the system reaches a steady-state in the reference frame of the moving forcing. The model is an extension of the well studied Matsuno-Gill model into a full spherical geometry and with a planetary-scale translating forcing representing the insolation received on an exoplanet from a host star. The speed of the gravity waves in the model is shown to be a key metric in evaluating the phase curve offset. If the velocity of the substellar point (relative to the planets surface) exceeds that of the gravity waves then the hotspot will lag the substellar point, as might be expected by consideration of forced gravity wave dynamics. However, when the substellar point is moving slower than the internal wavespeed of the system the hottest point can lead the passage of the forcing. We provide an interpretation of this result by consideration of the Rossby and Kelvin wave dynamics as well as, in the very slowly rotating case, a one-dimensional model that yields an analytic solution. Finally, we consider the inverse problem of constraining planetary rotation rate from an observed phase curve.