No Arabic abstract
We derive a simple model-independent upper bound on the strength of magnetic fields obtained in inflationary and post-inflationary magnetogenesis taking into account the constraints imposed by the condition of weak coupling, back-reaction and Schwinger effect. This bound turns out to be rather low for cosmologically interesting spatial scales. Somewhat higher upper bound is obtained if one assumes that some unknown mechanism suppresses the Schwinger effect in the early universe. Incidentally, we correct our previous estimates for this case.
We describe a simple scenario of inflationary magnetogenesis based on a helical coupling to electromagnetism. It allows to generate helical magnetic fields of strength of order up to $10^{- 7},text{G}$, when extrapolated to the current epoch, in a narrow spectral band centered at any physical wavenumber by adjusting the model parameters. Additional constraints on magnetic fields arise from the considerations of baryogenesis and, possibly, from the Schwinger effect of creation of charged particle-antiparticle pairs.
We consider helical coupling to electromagnetism and present a simple scenario of evolution of the coupling function leading to a viable inflationary magnetogenesis without the problem of back-reaction. In this scenario, helical magnetic fields of strength of order up to $10^{- 7},text{G}$, when extrapolated to the current epoch, can be generated in a narrow spectral band centered at any reasonable wavenumber by adjusting the model parameters. We discuss implications of this model for baryogenesis, which impose additional constraints on the strength and correlation length of magnetic field.
The $R^2$ term in the Starobinsky inflationary model can be regarded as a leading quantum correction to the gravitational effective action. We assume that parity-preserving and parity-violating (axial) non-minimal couplings between curvature and electromagnetic field are also present in the effective action. In the Einstein frame, they turn into non-trivial couplings of the scalaron and curvature to the electromagnetic field. We make an assessment of inflationary magnetogenesis in this model. In the case of parity-preserving couplings, amplification of magnetic field is negligibly small. In the case of axial couplings, magnetogenesis is hampered by strong back-reaction on the inflationary process, resulting in possible amplification of magnetic field at most by the factor $10^5$ relative to its vacuum fluctuations.
We present three-dimensional direct numerical simulations of the production of magnetic fields and gravitational waves (GWs) in the early Universe during a low energy scale matter-dominated post-inflationary reheating era, and during the early subsequent radiative era, which is strongly turbulent. The parameters of the model are determined such that it avoids a number of known physical problems and produces magnetic energy densities between 0.2% and 2% of the critical energy density at the end of reheating. During the subsequent development of a turbulent magnetohydrodynamic cascade, magnetic fields and GWs develop a spectrum that extends to higher frequencies in the millihertz (nanohertz) range for models with reheating temperatures of around 100 GeV (150 MeV) at the beginning of the radiation-dominated era. However, even though the turbulent cascade is fully developed, the GW spectrum shows a sharp drop for frequencies above the peak value. This suggests that the turbulence is less efficient in driving GWs than previously thought. The peaks of the resulting GW spectra may well be in the range accessible to space interferometers, pulsar timing arrays, and other facilities.
Using numerical simulations of helical inflationary magnetogenesis in a low reheating temperature scenario, we show that the magnetic energy spectrum is strongly peaked at a particular wavenumber that depends on the reheating temperature. Gravitational waves (GWs) are produced at frequencies between 3 nHz and 50 mHz for reheating temperatures between 150 MeV and 3x10^5 GeV, respectively. At and below the peak frequency, the stress spectrum is always found to be that of white noise. This implies a linear increase of GW energy per logarithmic wavenumber interval, instead of a cubic one, as previously thought. Both in the helical and nonhelical cases, the GW spectrum is followed by a sharp drop for frequencies above the respective peak frequency. In this magnetogenesis scenario, the presence of a helical term extends the peak of the GW spectrum and therefore also the position of the aforementioned drop toward larger frequencies compared to the case without helicity. This might make a difference in it being detectable with space interferometers. The efficiency of GW production is found to be almost the same as in the nonhelical case, and independent of the reheating temperature, provided the electromagnetic energy at the end of reheating is fixed to be a certain fraction of the radiation energy density. Also, contrary to the case without helicity, the electric energy is now less than the magnetic energy during reheating. The fractional circular polarization is found to be nearly hundred per cent in a certain range below the peak frequency range.