Do you want to publish a course? Click here

Topological Protection in non-Hermitian Haldane Honeycomb Lattices

89   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Topological phenomena in non-Hermitian systems have recently become a subject of great interest in the photonics and condensed-matter communities. In particular, the possibility of observing topologically-protected edge states in non-Hermitian lattices has sparked an intensive search for systems where this kind of states are sustained. Here, we present the first study on the emergence of topological edge states in two-dimensional Haldane lattices exhibiting balanced gain and loss. In line with recent studies on other Chern insulator models, we show that edge states can be observed in the so-called broken $mathcal{P}mathcal{T}$-symmetric phase, that is, when the spectrum of the gain-loss-balanced systems Hamiltonian is not entirely real. More importantly, we find that such topologically protected edge states emerge irrespective of the lattice boundaries, namely zigzag, bearded or armchair.



rate research

Read More

We show that non-Hermiticity enables topological phases with unidirectional transport in one-dimensional Floquet chains. The topological signatures of these phases are non-contractible loops in the spectrum of the Floquet propagator that are separated by an imaginary gap. Such loops occur exclusively in non-Hermitian Floquet systems. We define the corresponding topological invariant as the winding number of the Floquet propagator relative to the imaginary gap. To relate topology to transport, we introduce the concept of regularized dynamics of non-Hermitian chains. We establish that, under the conditions of regularized dynamics, transport is quantized in so far as the charge transferred over one period equals the topological winding number. We illustrate these theoretical findings with the example of a Floquet chain that features a topological phase transition and acts as a charge pump in the non-trivial topological phase. We finally discuss whether these findings justify the notion that non-Hermitian Floquet chains support topological transport.
In Hermitian topological systems, the bulk-boundary correspondence strictly constraints boundary transport to values determined by the topological properties of the bulk. We demonstrate that this constraint can be lifted in non-Hermitian Floquet insulators. Provided that the insulator supports an anomalous topological phase, non-Hermiticity allows us to modify the boundary states independently of the bulk, without sacrificing their topological nature. We explore the ensuing possibilities for a Floquet topological insulator with non-Hermitian time-reversal symmetry, where the helical transport via counterpropagating boundary states can be tailored in ways that overcome the constraints imposed by Hermiticity. Non-Hermitian boundary state engineering specifically enables the enhancement of boundary transport relative to bulk motion, helical transport with a preferred direction, and chiral transport in the same direction on opposite boundaries. We explain the experimental relevance of our findings for the example of photonic waveguide lattices.
An astroid-shaped loop of exceptional points (EPs), comprising four cusps, is found to spawn from the triple degeneracy point in the Brillouin zone (BZ) of a Lieb lattice with nearest-neighbor hoppings when non-Hermiticity is introduced. The occurrence of the EP loop is due to the realness of the discriminant which is guaranteed by the non-Hermitian chiral symmetry. The EPs at the four cusps involve the coalescence of three eigenstates, which is the combined result of the non-Hermitian chiral symmetry and mirror-T symmetry. The EP loop is exactly an astroid in the limit of an infinitesimal non-Hermiticity. The EP loop expands from the $M$ point with increasing non-Hermiticity and splits into two EP loops at a critical non-Hermiticity. The further increase of non-Hermiticity contracts the two EP loops towards and finally to two EPs at the $X$ and $Y$ points in the BZ, accompanied by the emergence of Dirac-like cones. The two EPs vanish at a larger non-Hermiticity. The EP loop disappears and several discrete EPs are found to survive when next-nearest hoppings are introduced to break the non-Hermitian chiral symmetry. A topological invariant called the discriminant number is used to characterize their robustness against perturbations. Both discrete EPs and those on the EP loop(s) are found to show anisotropic asymptotic behaviors. Finally, the experimental realization of the Lieb lattice using a coupled waveguide array is discussed.
Topological semimetals feature a diversity of nodal manifolds including nodal points, various nodal lines and surfaces, and recently novel quantum states in non-Hermitian systems have been arousing widespread research interests. In contrast to Hermitian systems whose bulk nodal points must form closed manifolds, it is fascinating to find that for non-Hermitian systems exotic nodal manifolds can be bounded by exceptional points in the bulk band structure. Such exceptional points, at which energy bands coalesce with band conservation violated, are iconic for non-Hermitian systems. In this work, we show that a variety of nodal lines and drumheads with exceptional boundary can be realized on 2D and 3D honeycomb lattices through natural and physically feasible non-Hermitian processes. The bulk nodal Fermi-arc and drumhead states, although is analogous to, but should be essentially distinguished from the surface counterpart of Weyl and nodal-line semimetals, respectively, for which surface nodal-manifold bands eventually sink into bulk bands. Then we rigorously examine the bulk-boundary correspondence of these exotic states with open boundary condition, and find that these exotic bulk states are thereby undermined, showing the essential importance of periodic boundary condition for the existence of these exotic states. As periodic boundary condition is non-realistic for real materials, we furthermore propose a practically feasible electrical-circuit simulation, with non-Hermitian devices implemented by ordinary operational amplifiers, to emulate these extraordinary states.
165 - Chun-Hui Liu , Shu Chen 2019
We classify topological defects in non-Hermitian systems with point gap, real gap and imaginary gap for all the Bernard-LeClair classes or generalized Bernard-LeClair classes in all dimensions. The defect Hamiltonian $H(bf{k}, {bf r})$ is described by a non-Hermitian Hamiltonian with spatially modulated adiabatical parameter ${bf r}$ surrounding the defect. While the non-Hermitian system with point gap belongs to any of 38 symmetry classes (Bernard-LeClair classes), for non-Hermitian systems with line-like gap we get 54 non-equivalent generalized Bernard-LeClair classes as a natural generalization of point gap classes. Although the classification of defects in Hermitian systems has been explored in the context of standard ten-fold Altland-Zirnbauer symmetry classes, a complete understanding of the role of the general non-Hermitian symmetries on the topological defects and their associated classification are still lacking. By continuous transformation and homeomorphic mapping, these non-Hermitian defect systems can be mapped to topologically equivalent Hermitian systems with associated symmetries, and we get the topological classification by classifying the corresponding Hermitian Hamiltonians. We discuss some non-trivial classes with point gap according to our classification table, and give explicitly the topological invariants for these classes. We also study some lattice or continuous models and discuss the correspondence between the topological number and zero modes at the topological defect.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا