No Free Lunch for Quantum Machine Learning


Abstract in English

The ultimate limits for the quantum machine learning of quantum data are investigated by obtaining a generalisation of the celebrated No Free Lunch (NFL) theorem. We find a lower bound on the quantum risk (the probability that a trained hypothesis is incorrect when presented with a random input) of a quantum learning algorithm trained via pairs of input and output states when averaged over training pairs and unitaries. The bound is illustrated using a recently introduced QNN architecture.

Download