No Arabic abstract
The Global Navigation Satellite Systems (GNSS) like GPS suffer from accuracy degradation and are almost unavailable in indoor environments. Indoor positioning systems (IPS) based on WiFi signals have been gaining popularity. However, owing to the strong spatial and temporal variations of wireless communication channels in the indoor environment, the achieved accuracy of existing IPS is around several tens of centimeters. We present the detailed design and implementation of a self-adaptive WiFi-based indoor distance estimation system using LSTMs. The system is novel in its method of estimating with high accuracy the distance of an object by overcoming possible causes of channel variations and is self-adaptive to the changing environmental and surrounding conditions. The proposed design has been developed and physically realized over a WiFi network consisting of ESP8266 (NodeMCU) devices. The experiment were conducted in a real indoor environment while changing the surroundings in order to establish the adaptability of the system. We introduce and compare different architectures for this task based on LSTMs, CNNs, and fully connected networks (FCNs). We show that the LSTM based model performs better among all the above-mentioned architectures by achieving an accuracy of 5.85 cm with a confidence interval of 93% on the scale of (4.14 m * 2.86 m). To the best of our knowledge, the proposed method outperforms other methods reported in the literature by a significant margin.
Long-Short-Term-Memory (LSTM) networks have been used extensively for time series forecasting in recent years due to their ability of learning patterns over different periods of time. In this paper, this ability is applied to learning the pattern of Global Positioning System (GPS)-based Precipitable Water Vapor (PWV) measurements over a period of 4 hours. The trained model was evaluated on more than 1500 hours of recorded data. It achieves a root mean square error (RMSE) of 0.098 mm for a forecasting interval of 5 minutes in the future, and outperforms the naive approach for a lead-time of up to 40 minutes.
Indoor intrusion detection technology has been widely utilized in network security monitoring, smart city, entertainment games, and other fields. Most existing indoor intrusion detection methods directly exploit the Received Signal Strength (RSS) data collected by Monitor Points (MPs) and do not consider the instability of WLAN signals in the complex indoor environments. In response to this urgent problem, this paper proposes a novel WLAN indoor intrusion detection method based on deep signal feature fusion and Minimized Multiple Kernel Maximum Mean Discrepancy (Minimized-MKMMD). Firstly, the multi-branch deep convolutional neural network is used to conduct the dimensionality reduction and feature fusion of the RSS data, and the tags are obtained according to the features of the offline and online RSS fusion features that are corresponding to the silence and intrusion states, and then based on this, the source domain and target domain are constructed respectively. Secondly, the optimal transfer matrix is constructed by minimizing MKMMD. Thirdly, the transferred RSS data in the source domain is utilized for training the classifiers that are applying in getting the classification of the RSS fusion features in the target domain in the same shared subspace. Finally, the intrusion detection of the target environment is realized by iteratively updating the process above until the algorithm converges. The experimental results show that the proposed method can effectively improve the accuracy and robustness of the intrusion detection system.
Localization is important for a large number of Internet of Things (IoT) endpoint devices connected by LoRaWAN. Due to the bandwidth limitations of LoRaWAN, existing localization methods without specialized hardware (e.g., GPS) produce poor performance. To increase the localization accuracy, we propose a super-resolution localization method, called Seirios, which features a novel algorithm to synchronize multiple non-overlapped communication channels by exploiting the unique features of the radio physical layer to increase the overall bandwidth. By exploiting both the original and the conjugate of the physical layer, Seirios can resolve the direct path from multiple reflectors in both indoor and outdoor environments. We design a Seirios prototype and evaluate its performance in an outdoor area of 100 m $times$ 60 m, and an indoor area of 25 m $times$ 15 m, which shows that Seirios can achieve a median error of 4.4 m outdoors (80% samples < 6.4 m), and 2.4 m indoors (80% samples < 6.1 m), respectively. The results show that Seirios produces 42% less localization error than the baseline approach. Our evaluation also shows that, different to previous studies in Wi-Fi localization systems that have wider bandwidth, time-of-fight (ToF) estimation is less effective for LoRaWAN localization systems with narrowband radio signals.
This paper proposes a novel framework for the segmentation of phonocardiogram (PCG) signals into heart states, exploiting the temporal evolution of the PCG as well as considering the salient information that it provides for the detection of the heart state. We propose the use of recurrent neural networks and exploit recent advancements in attention based learning to segment the PCG signal. This allows the network to identify the most salient aspects of the signal and disregard uninformative information. The proposed method attains state-of-the-art performance on multiple benchmarks including both human and animal heart recordings. Furthermore, we empirically analyse different feature combinations including envelop features, wavelet and Mel Frequency Cepstral Coefficients (MFCC), and provide quantitative measurements that explore the importance of different features in the proposed approach. We demonstrate that a recurrent neural network coupled with attention mechanisms can effectively learn from irregular and noisy PCG recordings. Our analysis of different feature combinations shows that MFCC features and their derivatives offer the best performance compared to classical wavelet and envelop features. Heart sound segmentation is a crucial pre-processing step for many diagnostic applications. The proposed method provides a cost effective alternative to labour extensive manual segmentation, and provides a more accurate segmentation than existing methods. As such, it can improve the performance of further analysis including the detection of murmurs and ejection clicks. The proposed method is also applicable for detection and segmentation of other one dimensional biomedical signals.
Compressed sensing (CS) deals with the problem of reconstructing a sparse vector from an under-determined set of observations. Approximate message passing (AMP) is a technique used in CS based on iterative thresholding and inspired by belief propagation in graphical models. Due to the high transmission rate and a high molecular absorption, spreading loss and reflection loss, the discrete-time channel impulse response (CIR) of a typical indoor THz channel is very long and exhibits an approximately sparse characteristic. In this paper, we develop AMP based channel estimation algorithms for indoor THz communications. The performance of these algorithms is compared to the state of the art. We apply AMP with soft- and hard-thresholding. Unlike the common applications in which AMP with hard-thresholding diverges, the properties of the THz channel favor this approach. It is shown that THz channel estimation via hard-thresholding AMP outperforms all previously proposed methods and approaches the oracle based performance closely.