Action-angle coordinates on coadjoint orbits and multiplicity free spaces from partial tropicalization


Abstract in English

Coadjoint orbits and multiplicity free spaces of compact Lie groups are important examples of symplectic manifolds with Hamiltonian groups actions. Constructing action-angle variables on these spaces is a challenging task. A fundamental result in the field is the Guillemin-Sternberg construction of Gelfand-Zeitlin integrable systems for the groups $K=U(n), SO(n)$. Extending these results to groups of other types is one of the goals of this paper. Partial tropicalizations are Poisson spaces with constant Poisson bracket built using techniques of Poisson-Lie theory and the geometric crystals of Berenstein-Kazhdan. They provide a bridge between dual spaces of Lie algebras ${rm Lie}(K)^*$ with linear Poisson brackets and polyhedral cones which parametrize the canonical bases of irreducible modules of $G=K^mathbb{C}$. We generalize the construction of partial tropicalizations to allow for arbitrary cluster charts, and apply it to questions in symplectic geometry. For each regular coadjoint orbit of a compact group $K$, we construct an exhaustion by symplectic embeddings of toric domains. As a by product we arrive at a conjectured formula for Gromov width of regular coadjoint orbits. We prove similar results for multiplicity free $K$-spaces.

Download