Do you want to publish a course? Click here

Improved Gradient based Adversarial Attacks for Quantized Networks

83   0   0.0 ( 0 )
 Added by Kartik Gupta
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Neural network quantization has become increasingly popular due to efficient memory consumption and faster computation resulting from bitwise operations on the quantized networks. Even though they exhibit excellent generalization capabilities, their robustness properties are not well-understood. In this work, we systematically study the robustness of quantized networks against gradient based adversarial attacks and demonstrate that these quantized models suffer from gradient vanishing issues and show a fake sense of security. By attributing gradient vanishing to poor forward-backward signal propagation in the trained network, we introduce a simple temperature scaling approach to mitigate this issue while preserving the decision boundary. Despite being a simple modification to existing gradient based adversarial attacks, experiments on CIFAR-10/100 datasets with VGG-16 and ResNet-18 networks demonstrate that our temperature scaled attacks obtain near-perfect success rate on quantized networks while outperforming original attacks on adversarially trained models as well as floating-point networks.



rate research

Read More

The existence of adversarial examples underscores the importance of understanding the robustness of machine learning models. Bayesian neural networks (BNNs), due to their calibrated uncertainty, have been shown to posses favorable adversarial robustness properties. However, when approximate Bayesian inference methods are employed, the adversarial robustness of BNNs is still not well understood. In this work, we employ gradient-free optimization methods in order to find adversarial examples for BNNs. In particular, we consider genetic algorithms, surrogate models, as well as zeroth order optimization methods and adapt them to the goal of finding adversarial examples for BNNs. In an empirical evaluation on the MNIST and Fashion MNIST datasets, we show that for various approximate Bayesian inference methods the usage of gradient-free algorithms can greatly improve the rate of finding adversarial examples compared to state-of-the-art gradient-based methods.
Adversarial examples can deceive a deep neural network (DNN) by significantly altering its response with imperceptible perturbations, which poses new potential vulnerabilities as the growing ubiquity of DNNs. However, most of the existing adversarial examples cannot maintain the malicious functionality if we apply an affine transformation on the resultant examples, which is an important measurement to the robustness of adversarial attacks for the practical risks. To address this issue, we propose an affine-invariant adversarial attack which can consistently construct adversarial examples robust over a distribution of affine transformation. To further improve the efficiency, we propose to disentangle the affine transformation into rotations, translations, magnifications, and reformulate the transformation in polar space. Afterwards, we construct an affine-invariant gradient estimator by convolving the gradient at the original image with derived kernels, which can be integrated with any gradient-based attack methods. Extensive experiments on the ImageNet demonstrate that our method can consistently produce more robust adversarial examples under significant affine transformations, and as a byproduct, improve the transferability of adversarial examples compared with the alternative state-of-the-art methods.
Research on adversarial examples in computer vision tasks has shown that small, often imperceptible changes to an image can induce misclassification, which has security implications for a wide range of image processing systems. Considering $L_2$ norm distortions, the Carlini and Wagner attack is presently the most effective white-box attack in the literature. However, this method is slow since it performs a line-search for one of the optimization terms, and often requires thousands of iterations. In this paper, an efficient approach is proposed to generate gradient-based attacks that induce misclassifications with low $L_2$ norm, by decoupling the direction and the norm of the adversarial perturbation that is added to the image. Experiments conducted on the MNIST, CIFAR-10 and ImageNet datasets indicate that our attack achieves comparable results to the state-of-the-art (in terms of $L_2$ norm) with considerably fewer iterations (as few as 100 iterations), which opens the possibility of using these attacks for adversarial training. Models trained with our attack achieve state-of-the-art robustness against white-box gradient-based $L_2$ attacks on the MNIST and CIFAR-10 datasets, outperforming the Madry defense when the attacks are limited to a maximum norm.
We propose the first general-purpose gradient-based attack against transformer models. Instead of searching for a single adversarial example, we search for a distribution of adversarial examples parameterized by a continuous-valued matrix, hence enabling gradient-based optimization. We empirically demonstrate that our white-box attack attains state-of-the-art attack performance on a variety of natural language tasks. Furthermore, we show that a powerful black-box transfer attack, enabled by sampling from the adversarial distribution, matches or exceeds existing methods, while only requiring hard-label outputs.
Visual object tracking is an important task that requires the tracker to find the objects quickly and accurately. The existing state-ofthe-art object trackers, i.e., Siamese based trackers, use DNNs to attain high accuracy. However, the robustness of visual tracking models is seldom explored. In this paper, we analyze the weakness of object trackers based on the Siamese network and then extend adversarial examples to visual object tracking. We present an end-to-end network FAN (Fast Attack Network) that uses a novel drift loss combined with the embedded feature loss to attack the Siamese network based trackers. Under a single GPU, FAN is efficient in the training speed and has a strong attack performance. The FAN can generate an adversarial example at 10ms, achieve effective targeted attack (at least 40% drop rate on OTB) and untargeted attack (at least 70% drop rate on OTB).

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا