Do you want to publish a course? Click here

The complete splittings of finite abelian groups

299   0   0.0 ( 0 )
 Added by Kevin Zhao
 Publication date 2020
  fields
and research's language is English
 Authors Kevin Zhao




Ask ChatGPT about the research

Let $G$ be a finite group. We will say that $M$ and $S$ form a textsl{complete splitting} (textsl{splitting}) of $G$ if every element (nonzero element) $g$ of $G$ has a unique representation of the form $g=ms$ with $min M$ and $sin S$, and $0$ has a such representation (while $0$ has no such representation). In this paper, we determine the structures of complete splittings of finite abelian groups. In particular, for complete splittings of cyclic groups our description is more specific. Furthermore, we show some results for existence and nonexistence of complete splittings of cyclic groups and find a relationship between complete splittings and splittings for finite groups.



rate research

Read More

The purpose of the article is to provide an unified way to formulate zero-sum invariants. Let $G$ be a finite additive abelian group. Let $B(G)$ denote the set consisting of all nonempty zero-sum sequences over G. For $Omega subset B(G$), let $d_{Omega}(G)$ be the smallest integer $t$ such that every sequence $S$ over $G$ of length $|S|geq t$ has a subsequence in $Omega$.We provide some first results and open problems on $d_{Omega}(G)$.
A subset $B$ of a group $G$ is called a difference basis of $G$ if each element $gin G$ can be written as the difference $g=ab^{-1}$ of some elements $a,bin B$. The smallest cardinality $|B|$ of a difference basis $Bsubset G$ is called the difference size of $G$ and is denoted by $Delta[G]$. The fraction $eth[G]:=frac{Delta[G]}{sqrt{|G|}}$ is called the difference characteristic of $G$. Using properies of the Galois rings, we prove recursive upper bounds for the difference sizes and characteristics of finite Abelian groups. In particular, we prove that for a prime number $pge 11$, any finite Abelian $p$-group $G$ has difference characteristic $eth[G]<frac{sqrt{p}-1}{sqrt{p}-3}cdotsup_{kinmathbb N}eth[C_{p^k}]<sqrt{2}cdotfrac{sqrt{p}-1}{sqrt{p}-3}$. Also we calculate the difference sizes of all Abelian groups of cardinality $<96$.
We characterize when (and how) a Right-Angled Artin group splits nontrivially over an abelian subgroup.
Let $f$ be the gluing map of a Heegaard splitting of a 3-manifold $W$. The goal of this paper is to determine the information about $W$ contained in the image of $f$ under the symplectic representation of the mapping class group. We prove three main results. First, we show that the first homology group of the three manifold together with Seiferts linking form provides a complete set of stable invariants. Second, we give a complete, computable set of invariants for these linking forms. Third, we show that a slight augmentation of Birmans determinantal invariant for a Heegaard splitting gives a complete set of unstable invariants.
81 - Pingzhi Yuan 2021
We say that $M$ and $S$ form a textsl{splitting} of $G$ if every nonzero element $g$ of $G$ has a unique representation of the form $g=ms$ with $min M$ and $sin S$, while $0$ has no such representation. The splitting is called {it nonsingular} if $gcd(|G|, a) = 1$ for any $ain M$. In this paper, we focus our study on nonsingular splittings of cyclic groups. We introduce a new notation --direct KM logarithm and we prove that if there is a prime $q$ such that $M$ splits $mathbb{Z}_q$, then there are infinitely many primes $p$ such that $M$ splits $mathbb{Z}_p$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا