Distinct nodal and nematic superconducting phases in the 2D Ising superconductor NbSe2


Abstract in English

Superconducting transition metal dichalcogenides like 2H-NbSe2 in their two-dimensional form (2D) exhibit a special form of Ising superconductivity in which the quasiparticle spins are firmly pinned in the direction perpendicular to the basal plane. This enables them to withstand exceptionally high magnetic fields far beyond the Pauli limit for superconductivity. We use field-angle-resolved magnetoresistance experiments for magnetic fields strictly rotated in the basal plane to investigate the dependence of the upper critical field (Hc2) on the orientation of the field in the plane. The field angle dependence of Hc2 directly reflects the symmetry of the superconducting order parameter. We observe a transformation from a six-fold nodal symmetry near Hc2(T) to a two-fold nodeless symmetry at lower temperatures. While the first phase agrees with theoretical predictions of a nodal topological superconducting phase, the observation of a second distinct superconducting phase with nodeless two-fold symmetry is unexpected and contradicts the crystalline symmetry. It may therefore be another example of an unconventional nematic superconducting phase besides doped superconducting Bi2Se3, and we demonstrate that in NbSe2 such a nematic state can indeed arise from the presence of several competing superconducting channels.

Download