Do you want to publish a course? Click here

Assessing the Security of OPC UA Deployments

96   0   0.0 ( 0 )
 Added by Martin Henze
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

To address the increasing security demands of industrial deployments, OPC UA is one of the first industrial protocols explicitly designed with security in mind. However, deploying it securely requires a thorough configuration of a wide range of options. Thus, assessing the security of OPC UA deployments and their configuration is necessary to ensure secure operation, most importantly confidentiality and integrity of industrial processes. In this work, we present extensions to the popular Metasploit Framework to ease network-based security assessments of OPC UA deployments. To this end, we discuss methods to discover OPC UA servers, test their authentication, obtain their configuration, and check for vulnerabilities. Ultimately, our work enables operators to verify the (security) configuration of their systems and identify potential attack vectors.



rate research

Read More

Due to increasing digitalization, formerly isolated industrial networks, e.g., for factory and process automation, move closer and closer to the Internet, mandating secure communication. However, securely setting up OPC UA, the prime candidate for secure industrial communication, is challenging due to a large variety of insecure options. To study whether Internet-facing OPC UA appliances are configured securely, we actively scan the IPv4 address space for publicly reachable OPC UA systems and assess the security of their configurations. We observe problematic security configurations such as missing access control (on 24% of hosts), disabled security functionality (24%), or use of deprecated cryptographic primitives (25%) on in total 92% of the reachable deployments. Furthermore, we discover several hundred devices in multiple autonomous systems sharing the same security certificate, opening the door for impersonation attacks. Overall, in this paper, we highlight commonly found security misconfigurations and underline the importance of appropriate configuration for security-featuring protocols.
Transportation safety, one of the main driving forces of the development of vehicular communication (VC) systems, relies on high-rate safety messaging (beaconing). At the same time, there is consensus among authorities, industry, and academia on the need to secure VC systems. With specific proposals in the literature, a critical question must be answered: can secure VC systems be practical and satisfy the requirements of safety applications, in spite of the significant communication and processing overhead and other restrictions security and privacy-enhancing mechanisms impose? To answer this question, we investigate in this paper the following three dimensions for secure and privacy-enhancing VC schemes: the reliability of communication, the processing overhead at each node, and the impact on a safety application. The results indicate that with the appropriate system design, including sufficiently high processing power, applications enabled by secure VC can be in practice as effective as those enabled by unsecured VC.
WhatsApp messenger is arguably the most popular mobile app available on all smart-phones. Over one billion people worldwide for free messaging, calling, and media sharing use it. In April 2016, WhatsApp switched to a default end-to-end encrypted service. This means that all messages (SMS), phone calls, videos, audios, and any other form of information exchanged cannot be read by any unauthorized entity since WhatsApp. In this paper we analyze the WhatsApp messaging platform and critique its security architecture along with a focus on its privacy preservation mechanisms. We report that the Signal Protocol, which forms the basis of WhatsApp end-to-end encryption, does offer protection against forward secrecy, and MITM to a large extent. Finally, we argue that simply encrypting the end-to-end channel cannot preserve privacy. The metadata can reveal just enough information to show connections between people, their patterns, and personal information. This paper elaborates on the security architecture of WhatsApp and performs an analysis on the various protocols used. This enlightens us on the status quo of the app security and what further measures can be used to fill existing gaps without compromising the usability. We start by describing the following (i) important concepts that need to be understood to properly understand security, (ii) the security architecture, (iii) security evaluation, (iv) followed by a summary of our work. Some of the important concepts that we cover in this paper before evaluating the architecture are - end-to-end encryption (E2EE), signal protocol, and curve25519. The description of the security architecture covers key management, end-to-end encryption in WhatsApp, Authentication Mechanism, Message Exchange, and finally the security evaluation. We then cover importance of metadata and role it plays in conserving privacy with respect to whatsapp.
During disasters, crisis, and emergencies the public relies on online services provided by official authorities to receive timely alerts, trustworthy information, and access to relief programs. It is therefore crucial for the authorities to reduce risks when accessing their online services. This includes catering to secure identification of service, secure resolution of name to network service, and content security and privacy as a minimum base for trustworthy communication. In this paper, we take a first look at Alerting Authorities (AA) in the US and investigate security measures related to trustworthy and secure communication. We study the domain namespace structure, DNSSEC penetration, and web certificates. We introduce an integrative threat model to better understand whether and how the online presence and services of AAs are harmed. As an illustrative example, we investigate 1,388 Alerting Authorities. We observe partial heightened security relative to the global Internet trends, yet find cause for concern as about 78% of service providers fail to deploy measures of trustworthy service provision. Our analysis shows two major shortcomings. First, how the DNS ecosystem is leveraged: about 50% of organizations do not own their dedicated domain names and are dependent on others, 55% opt for unrestricted-use namespaces, which simplifies phishing, and less than 4% of unique AA domain names are secured by DNSSEC, which can lead to DNS poisoning and possibly to certificate misissuance. Second, how Web PKI certificates are utilized: 15% of all hosts provide none or invalid certificates, thus cannot cater to confidentiality and data integrity, 64% of the hosts provide domain validation certification that lack any identity information, and shared certificates have gained on popularity, which leads to fate-sharing and can be a cause for instability.
76 - Ahmed E. Youssef 2020
Security is considered one of the top ranked risks of Cloud Computing (CC) due to the outsourcing of sensitive data onto a third party. In addition, the complexity of the cloud model results in a large number of heterogeneous security controls that must be consistently managed. Hence, no matter how strongly the cloud model is secured, organizations continue suffering from lack of trust on CC and remain uncertain about its security risk consequences. Traditional risk management frameworks do not consider the impact of CC security risks on the business objectives of the organizations. In this paper, we propose a novel Cloud Security Risk Management Framework (CSRMF) that helps organizations adopting CC identify, analyze, evaluate, and mitigate security risks in their Cloud platforms. Unlike traditional risk management frameworks, CSRMF is driven by the business objectives of the organizations. It allows any organization adopting CC to be aware of cloud security risks and align their low-level management decisions according to high-level business objectives. In essence, it is designed to address impacts of cloud-specific security risks into business objectives in a given organization. Consequently, organizations are able to conduct a cost-value analysis regarding the adoption of CC technology and gain an adequate level of confidence in Cloud technology. On the other hand, Cloud Service Providers (CSP) are able to improve productivity and profitability by managing cloud-related risks. The proposed framework has been validated and evaluated through a use-case scenario.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا