Do you want to publish a course? Click here

Twisting on pre-Lie algebras and quasi-pre-Lie bialgebras

119   0   0.0 ( 0 )
 Added by Jiefeng Liu
 Publication date 2020
  fields Physics
and research's language is English
 Authors Jiefeng Liu




Ask ChatGPT about the research

We study (quasi-)twilled pre-Lie algebras and the associated $L_infty$-algebras and differential graded Lie algebras. Then we show that certain twisting transformations on (quasi-)twilled pre-Lie algbras can be characterized by the solutions of Maurer-Cartan equations of the associated differential graded Lie algebras ($L_infty$-algebras). Furthermore, we show that $mathcal{O}$-operators and twisted $mathcal{O}$-operators are solutions of the Maurer-Cartan equations. As applications, we study (quasi-)pre-Lie bialgebras using the associated differential graded Lie algebras ($L_infty$-algebras) and the twisting theory of (quasi-)twilled pre-Lie algebras. In particular, we give a construction of quasi-pre-Lie bialgebras using symplectic Lie algebras, which is parallel to that a Cartan $3$-form on a semi-simple Lie algebra gives a quasi-Lie bialgebra.



rate research

Read More

In this paper, we study the structure of 3-Lie algebras with involutive derivations. We prove that if $A$ is an $m$-dimensional 3-Lie algebra with an involutive derivation $D$, then there exists a compatible 3-pre-Lie algebra $(A, { , , , }_D)$ such that $A$ is the sub-adjacent 3-Lie algebra, and there is a local cocycle $3$-Lie bialgebraic structure on the $2m$-dimensional semi-direct product 3-Lie algebra $Altimes_{ad^*} A^*$, which is associated to the adjoint representation $(A, ad)$. By means of involutive derivations, the skew-symmetric solution of the 3-Lie classical Yang-Baxter equation in the 3-Lie algebra $Altimes_{ad^*}A^*$, a class of 3-pre-Lie algebras, and eight and ten dimensional local cocycle 3-Lie bialgebras are constructed.
We describe $L_infty$-algebras governing homotopy relative Rota-Baxter Lie algebras and triangular $L_infty$-bialgebras, and establish a map between them. Our formulas are based on a functorial approach to Voronovs higher derived brackets construction which is of independent interest.
124 - Jiefeng Liu , Qi Wang 2020
In this paper, we study pre-Lie analogues of Poisson-Nijenhuis structures and introduce ON-structures on bimodules over pre-Lie algebras. We show that an ON-structure gives rise to a hierarchy of pairwise compatible O-operators. We study solutions of the strong Maurer-Cartan equation on the twilled pre-Lie algebra associated to an O-operator, which gives rise to a pair of ON-structures which are naturally in duality. We show that KVN-structures and HN-structures on a pre-Lie algebra g are corresponding to ON-structures on the bimodule $(mathfrak g^*;mathrm{ad}^*,-R^*)$, and $KVOmega$-structures are corresponding to solutions of the strong Maurer-Cartan equation on a twilled pre-Lie algebra associated to an $s$-matrix.
227 - Ruipu Bai , Weiwei Guo , Lixin Lin 2016
The $n$-Lie bialgebras are studied. In Section 2, the $n$-Lie coalgebra with rank $r$ is defined, and the structure of it is discussed. In Section 3, the $n$-Lie bialgebra is introduced. A triple $(L, mu, Delta)$ is an $n$-Lie bialgebra if and only if $Delta$ is a conformal $1$-cocycle on the $n$-Lie algebra $L$ associated to $L$-modules $(L^{otimes n}, rho_s^{mu})$, $1leq sleq n$, and the structure of $n$-Lie bialgebras is investigated by the structural constants. In Section 4, two-dimensional extension of finite dimensional $n$-Lie bialgebras are studied. For an $m$ dimensional $n$-Lie bialgebra $(L, mu, Delta)$, and an $ad_{mu}$-invariant symmetric bilinear form on $L$, the $m+2$ dimensional $(n+1)$-Lie bialgebra is constructed. In the last section, the bialgebra structure on the finite dimensional simple $n$-Lie algebra $A_n$ is discussed. It is proved that only bialgebra structures on the simple $n$-Lie algebra $A_n$ are rank zero, and rank two.
In this paper, we develop the deformation theory controlled by pre-Lie algebras; the main tool is a new integration theory for pre-Lie algebras. The main field of application lies in homotopy algebra structures over a Koszul operad; in this case, we provide a homotopical description of the associated Deligne groupoid. This permits us to give a conceptual proof, with complete formulae, of the Homotopy Transfer Theorem by means of gauge action. We provide a clear explanation of this latter ubiquitous result: there are two gauge elements whose action on the original structure restrict its inputs and respectively its output to the homotopy equivalent space. This implies that a homotopy algebra structure transfers uniformly to a trivial structure on its underlying homology if and only if it is gauge trivial; this is the ultimate generalization of the $dd^c$-lemma.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا