Do you want to publish a course? Click here

Dispersion tailoring in wedge microcavities for Kerr comb generation

66   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The shaping of group velocity dispersion in microresonators is an important component in the generation of wideband optical frequency combs. Small resonators - with tight bending radii - offer the large free-spectral range desirable for wide comb formation. However, the tighter bending usually limit comb formation as it enhances normal group velocity dispersion. We experimentally demonstrate that engineering the sidewall angle of small-radius (100 $mu$m), 3 $mu$m-thick silica wedge microdisks enables dispersion tuning in both normal and anomalous regimes, without significantly affecting the free spectral range. A microdisk with wedge angle of $55^{circ}$ (anomalous dispersion) is used to demonstrate a 300 nm bandwidth Kerr optical frequency comb.



rate research

Read More

Kerr microresonators driven in the normal dispersion regime typically require the presence of localized dispersion perturbations, such as those induced by avoided mode crossings, to initiate the formation of optical frequency combs. In this work, we experimentally demonstrate that this requirement can be lifted by driving the resonator with a pulsed pump source. We also show that controlling the desynchronization between the pump repetition rate and the cavity free-spectral range (FSR) provides a simple mechanism to tune the center frequency of the output comb. Using a fiber mini-resonator with a radius of only 6 cm we experimentally present spectrally flat combs with a bandwidth of 3 THz whose center frequency can be tuned by more than 2 THz. By driving the cavity at harmonics of its 0.54 GHz FSR, we are able to generate combs with line spacings selectable between 0.54 and 10.8 GHz. The ability to tune both the center frequency and frequency spacing of the output comb highlights the flexibility of this platform. Additionally, we demonstrate that under conditions of large pump-cavity desynchronization, the same cavity also supports a new form of Raman-assisted anomalous dispersion cavity soliton.
Microresonator Kerr frequency combs, which rely on third-order nonlinearity ($chi^{(3)}$), are of great interest for a wide range of applications including optical clocks, pulse shaping, spectroscopy, telecommunications, light detection and ranging (LiDAR) and quantum information processing. Many of these applications require further spectral and temporal control of the generated frequency comb signal, which is typically accomplished using additional photonic elements with strong second-order nonlinearity ($chi^{(2)}$). To date these functionalities have largely been implemented as discrete off-chip components due to material limitations, which come at the expense of extra system complexity and increased optical losses. Here we demonstrate the generation, filtering and electro-optic modulation of a frequency comb on a single monolithic integrated chip, using a thin-film lithium niobate (LN) photonic platform that simultaneously possesses large $chi^{(2)}$ and $chi^{(3)}$ nonlinearities and low optical losses. We generate broadband Kerr frequency combs using a dispersion-engineered high quality factor LN microresonator, select a single comb line using an electrically programmable add-drop filter, and modulate the intensity of the selected line. Our results pave the way towards monolithic integrated frequency comb solutions for spectroscopy data communication, ranging and quantum photonics.
Optical whispering gallery mode (WGM) resonators have been very attracting platforms for versatile Kerr frequency comb generations. We report a systematic study on the material dispersion of various optical materials that are capable of supporting quality factors above $10^9$. Using an analytical approximation of WGM resonant frequencies in disk resonators, we investigate the effect of the geometry and transverse mode order on the total group-velocity dispersion ($GVD$). We demonstrate that the major radii and the radial mode indices play an important role in tailoring the $GVD$ of WGM resonators. In particular, our study shows that in WGM disk-resonators, the polar families of modes have very similar $GVD$, while the radial families of modes feature dispersion values that can differ by up to several orders of magnitude. The effect of these giant dispersion shifts are experimentally evidenced in Kerr comb generation with magnesium fluoride. From a more general perspective, this critical feature enables to push the zero-dispersion wavelength of fluorite crystals towards the mid-infrared (mid-IR) range, thereby allowing for efficient Kerr comb generation in that spectral range. We show that barium fluoride is the most interesting crystal in this regard, due to its zero dispersion wavelength ($ZDW$) at $1.93 rm{mu m}$ and an optimal dispersion profile in the mid-IR regime. We expect our results to facilitate the design of different platforms for Kerr frequency comb generations in both telecommunication and mid-IR spectral ranges.
Nonlinear Kerr micro-resonators have enabled fundamental breakthroughs in the understanding of dissipative solitons, as well as in their application to optical frequency comb generation. However, the conversion efficiency of the pump power into a soliton frequency comb typically remains below a few percent. We introduce a hybrid Mach-Zehnder ring resonator geometry, consisting of a micro-ring resonator embedded in an additional cavity with twice the optical path length of the ring. The resulting interferometric back coupling enables to achieve an unprecedented control of the pump depletion: pump-to-frequency comb conversion efficiencies of up to 98% of the usable power is experimentally demonstrated with a soliton crystal comb. We assess the robustness of the proposed on-chip geometry by generating a large variety of dissipative Kerr soliton combs, which require a lower amount of pump power to be accessed, when compared with an isolated micro-ring resonator with identical parameters. Micro-resonators with feedback enable accessing new regimes of coherent soliton comb generation, and are well suited for comb applications in astronomy, spectroscopy and telecommunications.
Dissipative Kerr cavity solitons (DKSs) are localized particle-like wave packets that have attracted peoples great interests in the past decades. Besides being an excellent candidate for studying nonlinear physics, DKSs can also enable the generation of broadband frequency combs which have revolutionized a wide range of applications. The formation of DKSs are generally explained by a double balance mechanism. The group velocity dispersion is balanced by the Kerr effect; and the cavity loss is compensated by the parametric gain. Here, we show that DKSs can emerge through the interplay between dispersive loss and Kerr gain, without the participation of group velocity dispersion. By incorporating rectangular gate spectral filtering in a zero-dispersion coherently driven Kerr cavity, we demonstrate the generation of Nyquist-pulse-like solitons with unprecedented ultra-flat spectra in the frequency domain. The discovery of pure dissipation enabled solitons reveals new insights into the cavity soliton dynamics, and provides a useful tool for spectral tailoring of Kerr frequency combs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا