Do you want to publish a course? Click here

EQL -- an extremely easy to learn knowledge graph query language, achieving highspeed and precise search

117   0   0.0 ( 0 )
 Added by Alan Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

EQL, also named as Extremely Simple Query Language, can be widely used in the field of knowledge graph, precise search, strong artificial intelligence, database, smart speaker ,patent search and other fields. EQL adopt the principle of minimalism in design and pursues simplicity and easy to learn so that everyone can master it quickly. EQL language and lambda calculus are interconvertible, that reveals the mathematical nature of EQL language, and lays a solid foundation for rigor and logical integrity of EQL language. The EQL language and a comprehensive knowledge graph system with the worlds commonsense can together form the foundation of strong AI in the future, and make up for the current lack of understanding of worlds commonsense by current AI system. EQL language can be used not only by humans, but also as a basic language for data query and data exchange between robots.



rate research

Read More

As Knowledge Graphs (KGs) continue to gain widespread momentum for use in different domains, storing the relevant KG content and efficiently executing queries over them are becoming increasingly important. A range of Data Management Systems (DMSs) have been employed to process KGs. This paper aims to provide an in-depth analysis of query performance across diverse DMSs and KG query types. Our aim is to provide a fine-grained, comparative analysis of four major DMS types, namely, row-, column-, graph-, and document-stores, against major query types, namely, subject-subject, subject-object, tree-like, and optional joins. In particular, we analyzed the performance of row-store Virtuoso, column-store Virtuoso, Blazegraph (i.e., graph-store), and MongoDB (i.e., document-store) using five well-known benchmarks, namely, BSBM, WatDiv, FishMark, BowlognaBench, and BioBench-Allie. Our results show that no single DMS displays superior query performance across the four query types. In particular, row- and column-store Virtuoso are a factor of 3-8 faster for tree-like joins, Blazegraph performs around one order of magnitude faster for subject-object joins, and MongoDB performs over one order of magnitude faster for high-selective queries.
Integrating an external language model into a sequence-to-sequence speech recognition system is non-trivial. Previous works utilize linear interpolation or a fusion network to integrate external language models. However, these approaches introduce external components, and increase decoding computation. In this paper, we instead propose a knowledge distillation based training approach to integrating external language models into a sequence-to-sequence model. A recurrent neural network language model, which is trained on large scale external text, generates soft labels to guide the sequence-to-sequence model training. Thus, the language model plays the role of the teacher. This approach does not add any external component to the sequence-to-sequence model during testing. And this approach is flexible to be combined with shallow fusion technique together for decoding. The experiments are conducted on public Chinese datasets AISHELL-1 and CLMAD. Our approach achieves a character error rate of 9.3%, which is relatively reduced by 18.42% compared with the vanilla sequence-to-sequence model.
465 - Linfeng Li , Peng Wang , Yao Wang 2019
This paper proposes an algorithm named as PrTransH to learn embedding vectors from real world EMR data based medical knowledge. The unique challenge in embedding medical knowledge graph from real world EMR data is that the uncertainty of knowledge triplets blurs the border between correct triplet and wrong triplet, changing the fundamental assumption of many existing algorithms. To address the challenge, some enhancements are made to existing TransH algorithm, including: 1) involve probability of medical knowledge triplet into training objective; 2) replace the margin-based ranking loss with unified loss calculation considering both valid and corrupted triplets; 3) augment training data set with medical background knowledge. Verifications on real world EMR data based medical knowledge graph prove that PrTransH outperforms TransH in link prediction task. To the best of our survey, this paper is the first one to learn and verify knowledge embedding on probabilistic knowledge graphs.
Arising user-centric graph applications such as route planning and personalized social network analysis have initiated a shift of paradigms in modern graph processing systems towards multi-query analysis, i.e., processing multiple graph queries in parallel on a shared graph. These applications generate a dynamic number of localized queries around query hotspots such as popular urban areas. However, existing graph processing systems are not yet tailored towards these properties: The employed methods for graph partitioning and synchronization management disregard query locality and dynamism which leads to high query latency. To this end, we propose the system Q-Graph for multi-query graph analysis that considers query locality on three levels. (i) The query-aware graph partitioning algorithm Q-cut maximizes query locality to reduce communication overhead. (ii) The method for synchronization management, called hybrid barrier synchronization, allows for full exploitation of local queries spanning only a subset of partitions. (iii) Both methods adapt at runtime to changing query workloads in order to maintain and exploit locality. Our experiments show that Q-cut reduces average query latency by up to 57 percent compared to static query-agnostic partitioning algorithms.
Querying graph structured data is a fundamental operation that enables important applications including knowledge graph search, social network analysis, and cyber-network security. However, the growing size of real-world data graphs poses severe challenges for graph databases to meet the response-time requirements of the applications. Planning the computational steps of query processing - Query Planning - is central to address these challenges. In this paper, we study the problem of learning to speedup query planning in graph databases towards the goal of improving the computational-efficiency of query processing via training queries.We present a Learning to Plan (L2P) framework that is applicable to a large class of query reasoners that follow the Threshold Algorithm (TA) approach. First, we define a generic search space over candidate query plans, and identify target search trajectories (query plans) corresponding to the training queries by performing an expensive search. Subsequently, we learn greedy search control knowledge to imitate the search behavior of the target query plans. We provide a concrete instantiation of our L2P framework for STAR, a state-of-the-art graph query reasoner. Our experiments on benchmark knowledge graphs including DBpedia, YAGO, and Freebase show that using the query plans generated by the learned search control knowledge, we can significantly improve the speed of STAR with negligible loss in accuracy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا