No Arabic abstract
In this proceeding, we present a short review of the fascinating nebulosities of symbiotic binary R Aquarii. The R Aquarii system, comprising the central binary and surrounding nebular material, has been the subject of near-continuous study since its discovery, with a few hundred papers listed in ADS. As such, it is impossible to provide here the comprehensive review that R Aquarii deserves, instead we chose to focus on the nebulosities -- covering both our own research and other relevant results from the literature.
Multi-epoch phase-referencing VLBI (Very Long Baseline Interferometry) observations with VERA (VLBI Exploration of Radio Astrometry) were performed for the symbiotic star R Aquarii (R Aqr) from September 2005 to Oct 2006. Tracing one of the $v=2$, $J=1-0$ SiO maser spots, we measured an annual parallax of $pi = 4.59pm0.24$ mas, corresponding to a distance of $218_{-11}^{+12}$ pc. Our result is consistent with earlier distance measurements, but yields the highest accuracy of about $5%$ level. Applying our distance, we derived an absolute K-band magnitude of $M_{mathrm{K}} = -7.71 pm 0.11$, which is consistent with the recent Period-Luminosity relation by VLBI parallax measurements for 5 OH-Mira variables. In addition, the expansion age of an inner nebulae around R Aqr is found to be about 240 years, corresponds to about the year 1773.
Any white dwarf or neutron star that accretes enough material from a red giant companion, such that this interaction can be detected at some wavelength, is currently termed Symbiotic Star (typical P(orb)=2-3 years). In the majority of ~400 known systems, the WD burns nuclearly at its surface the accreted material, and the resulting high temperature (T(eff)=10(^5)~K) and luminosity (L(hot)=10(^3)-10(^4) Lsun) allow ionization of a large fraction of the cool giants wind, making such symbiotic stars easily recognizable through the whole Galaxy and across the Local Group. X-ray observations are now revealing the existence of a parallel (and larger ?) population of optically-quiet, accreting-only symbiotic stars. Accretion flows and disks, ionization fronts and shock, complex 3D geometries and new evolution channels are gaining relevance and are reshaping our understanding of symbiotic stars. We review the different types of symbiotic stars currently in the family and their variegated outburst behaviors through an unified evolution scheme connecting them all.
FO Aquarii, an asynchronous magnetic cataclysmic variable (intermediate polar) went into a low-state in 2016, from which it slowly and steadily recovered without showing dwarf nova outbursts. This requires explanation since in a low-state, the mass-transfer rate is in principle too low for the disc to be fully ionized and the disc should be subject to the standard thermal and viscous instability observed in dwarf novae. We investigate the conditions under which an accretion disc in an intermediate polar could exhibit a luminosity drop of 2 magnitudes in the optical band without showing outbursts. We use our numerical code for the time evolution of accretion discs, including other light sources from the system (primary, secondary, hot spot). We show that although it is marginally possible for the accretion disc in the low-state to stay on the hot stable branch, the required mass-transfer rate in the normal state would then have to be extremely high, of the order of 10$^{19}$ gs$^{-1}$ or even larger. This would make the system so intrinsically bright that its distance should be much larger than allowed by all estimates. We show that observations of FO Aqr are well accounted for by the same mechanism that we have suggested as explaining the absence of outbursts during low states of VY Scl stars: during the decay, the magnetospheric radius exceeds the circularization radius, so that the disc disappears before it enters the instability strip for dwarf nova outbursts. Our results are unaffected, and even reinforced, if accretion proceeds both via the accretion disc and directly via the stream during some intermediate stages; the detailed process through which the disc disappears still needs investigations.
We report simultaneous observations of the flaring behaviour of the cataclysmic variable star AE Aqr. The observations are in Johnson B and V bands. The colour-magnitude diagrams (B-V versus V and B-V vs. B) show that the star becomes blues as it becomes brighter. In our model AE Aqr behaviour can be explained with flares (fireballs) with 0.03 < B-V < 0.30 and temperature in the interval 8000 < T < 12000.
We report the discovery of a possible symbiotic star, in the Large Magellanic Cloud (LMC). The object under consideration here, designated as RP 870, was detected during the course of a comprehensive H$alpha$ survey of the LMC by Reid & Parker (2012). The spectrum of RP 870 showed high ionization emission lines of He I, He II and [O III] and molecular absorption bands of TiO $lambda$$lambda$6180, 7100. The collective signatures of a hot component (high excitation/ionization lines) and of a cool component (TiO molecular bands) are seen in RP 870, from which we propose it as a symbiotic star. Since known symbiotic systems are rare in the LMC, possibly less than a dozen are known, we thought the present detection to be interesting enough to be reported.