Analytic and geometric properties of scattering from periodically modulated quantum-optical systems


Abstract in English

We study the scattering of photons from periodically modulated quantum-optical systems. For excitation-number conserving quantum optical systems, we connect the analytic structure of the frequency-domain N-photon scattering matrix of the system to the Floquet decomposition of its effective Hamiltonian. Furthermore, it is shown that the first order contribution to the transmission or equal-time N-photon correlation spectrum with respect to the modulation frequency is completely geometric in nature i.e. it only depends on the Hamiltonian trajectory and not on the precise nature of the modulation being applied.

Download