No Arabic abstract
We consider a broad class of Approximate Message Passing (AMP) algorithms defined as a Lipschitzian functional iteration in terms of an $ntimes n$ random symmetric matrix $A$. We establish universality in noise for this AMP in the $n$-limit and validate this behavior in a number of AMPs popularly adapted in compressed sensing, statistical inferences, and optimizations in spin glasses.
We consider a class of nonlinear mappings $mathsf{F}_{A,N}$ in $mathbb{R}^N$ indexed by symmetric random matrices $Ainmathbb{R}^{Ntimes N}$ with independent entries. Within spin glass theory, special cases of these mappings correspond to iterating the TAP equations and were studied by Bolthausen [Comm. Math. Phys. 325 (2014) 333-366]. Within information theory, they are known as approximate message passing algorithms. We study the high-dimensional (large $N$) behavior of the iterates of $mathsf{F}$ for polynomial functions $mathsf{F}$, and prove that it is universal; that is, it depends only on the first two moments of the entries of $A$, under a sub-Gaussian tail condition. As an application, we prove the universality of a certain phase transition arising in polytope geometry and compressed sensing. This solves, for a broad class of random projections, a conjecture by David Donoho and Jared Tanner.
Approximate message passing (AMP) is a low-cost iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions. However, AMP only applies to independent identically distributed (IID) transform matrices, but may become unreliable for other matrix ensembles, especially for ill-conditioned ones. To handle this difficulty, orthogonal/vector AMP (OAMP/VAMP) was proposed for general right-unitarily-invariant matrices. However, the Bayes-optimal OAMP/VAMP requires high-complexity linear minimum mean square error estimator. To solve the disadvantages of AMP and OAMP/VAMP, this paper proposes a memory AMP (MAMP), in which a long-memory matched filter is proposed for interference suppression. The complexity of MAMP is comparable to AMP. The asymptotic Gaussianity of estimation errors in MAMP is guaranteed by the orthogonality principle. A state evolution is derived to asymptotically characterize the performance of MAMP. Based on the state evolution, the relaxation parameters and damping vector in MAMP are optimized. For all right-unitarily-invariant matrices, the optimized MAMP converges to OAMP/VAMP, and thus is Bayes-optimal if it has a unique fixed point. Finally, simulations are provided to verify the validity and accuracy of the theoretical results.
We study the problem of estimating a rank-$1$ signal in the presence of rotationally invariant noise-a class of perturbations more general than Gaussian noise. Principal Component Analysis (PCA) provides a natural estimator, and sharp results on its performance have been obtained in the high-dimensional regime. Recently, an Approximate Message Passing (AMP) algorithm has been proposed as an alternative estimator with the potential to improve the accuracy of PCA. However, the existing analysis of AMP requires an initialization that is both correlated with the signal and independent of the noise, which is often unrealistic in practice. In this work, we combine the two methods, and propose to initialize AMP with PCA. Our main result is a rigorous asymptotic characterization of the performance of this estimator. Both the AMP algorithm and its analysis differ from those previously derived in the Gaussian setting: at every iteration, our AMP algorithm requires a specific term to account for PCA initialization, while in the Gaussian case, PCA initialization affects only the first iteration of AMP. The proof is based on a two-phase artificial AMP that first approximates the PCA estimator and then mimics the true AMP. Our numerical simulations show an excellent agreement between AMP results and theoretical predictions, and suggest an interesting open direction on achieving Bayes-optimal performance.
We consider the problem of estimating a signal from measurements obtained via a generalized linear model. We focus on estimators based on approximate message passing (AMP), a family of iterative algorithms with many appealing features: the performance of AMP in the high-dimensional limit can be succinctly characterized under suitable model assumptions; AMP can also be tailored to the empirical distribution of the signal entries, and for a wide class of estimation problems, AMP is conjectured to be optimal among all polynomial-time algorithms. However, a major issue of AMP is that in many models (such as phase retrieval), it requires an initialization correlated with the ground-truth signal and independent from the measurement matrix. Assuming that such an initialization is available is typically not realistic. In this paper, we solve this problem by proposing an AMP algorithm initialized with a spectral estimator. With such an initialization, the standard AMP analysis fails since the spectral estimator depends in a complicated way on the design matrix. Our main contribution is a rigorous characterization of the performance of AMP with spectral initialization in the high-dimensional limit. The key technical idea is to define and analyze a two-phase artificial AMP algorithm that first produces the spectral estimator, and then closely approximates the iterates of the true AMP. We also provide numerical results that demonstrate the validity of the proposed approach.
In this paper we treat both forms of probabilistic inference, estimating marginal probabilities of the joint distribution and finding the most probable assignment, through a unified message-passing algorithm architecture. We generalize the Belief Propagation (BP) algorithms of sum-product and max-product and tree-rewaighted (TRW) sum and max product algorithms (TRBP) and introduce a new set of convergent algorithms based on convex-free-energy and Linear-Programming (LP) relaxation as a zero-temprature of a convex-free-energy. The main idea of this work arises from taking a general perspective on the existing BP and TRBP algorithms while observing that they all are reductions from the basic optimization formula of $f + sum_i h_i$ where the function $f$ is an extended-valued, strictly convex but non-smooth and the functions $h_i$ are extended-valued functions (not necessarily convex). We use tools from convex duality to present the primal-dual ascent algorithm which is an extension of the Bregman successive projection scheme and is designed to handle optimization of the general type $f + sum_i h_i$. Mapping the fractional-free-energy variational principle to this framework introduces the norm-product message-passing. Special cases include sum-product and max-product (BP algorithms) and the TRBP algorithms. When the fractional-free-energy is set to be convex (convex-free-energy) the norm-product is globally convergent for estimating of marginal probabilities and for approximating the LP-relaxation. We also introduce another branch of the norm-product, the convex-max-product. The convex-max-product is convergent (unlike max-product) and aims at solving the LP-relaxation.