The left-right supersymmetric option at a high-energy upgrade of the LHC


Abstract in English

We investigate the possibility that a minimal realization of left-right supersymmetry can be reachable at a high-energy upgrade of the LHC, expected to operate at a center-of-mass energy of 27 TeV. This minimal scenario has a relatively light $SU(2)_R$ doubly-charged Higgs boson, which could decay dominantly into tau-lepton pairs. We explore the associated signals comprised of at least three hadronically-decaying taus, or with at least two hadronic taus and one same-sign-same-flavor charged lepton pair. Our analysis shows that the former signature is challenging to use for getting handles on the signal due to the large corresponding background, and that the latter one can lead to a handful of new physics events in an almost background-free environment. We however find that a signal comprised of three hadronically-decaying tau leptons is likely to be observed at a low luminosity of proton-proton collisions at a 27 TeV upgrade of the LHC.

Download