Do you want to publish a course? Click here

Non-Gaussian Entanglement Renormalization for Quantum Fields

133   0   0.0 ( 0 )
 Added by Javier Molina Dr
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, a non-Gaussian cMERA tensor network for interacting quantum field theories (icMERA) is presented. This consists of a continuous tensor network circuit in which the generator of the entanglement renormalization of the wavefunction is nonperturbatively extended with nonquadratic variational terms. The icMERA circuit nonperturbatively implements a set of scale dependent nonlinear transformations on the fields of the theory, which suppose a generalization of the scale dependent linear transformations induced by the Gaussian cMERA circuit. Here we present these transformations for the case of self-interacting scalar and fermionic field theories. Finally, the icMERA tensor network is fully optimized for the $lambda phi^4$ theory in $(1+1)$ dimensions. This allows us to evaluate, nonperturbatively, the connected parts of the two- and four-point correlation functions. Our results show that icMERA wavefunctionals encode proper non-Gaussian correlations of the theory, thus providing a new variational tool to study phenomena related with strongly interacting field theories.



rate research

Read More

A general method to build the entanglement renormalization (cMERA) for interacting quantum field theories is presented. We improve upon the well-known Gaussian formalism used in free theories through a class of variational non-Gaussian wavefunctionals for which expectation values of local operators can be efficiently calculated analytically and in a closed form. The method consists of a series of scale-dependent nonlinear canonical transformations on the fields of the theory under consideration. Here, the $lambda, phi^4$ and the sine-Gordon scalar theories are used to illustrate how non-perturbative effects far beyond the Gaussian approximation are obtained by considering the energy functional and the correlation functions of the theory.
The continuous Multi Scale Entanglement Renormalization Anstaz (cMERA) consists of a variational method which carries out a real space renormalization scheme on the wavefunctionals of quantum field theories. In this work we calculate the entanglement entropy of the half space for a free scalar theory through a Gaussian cMERA circuit. We obtain the correct entropy written in terms of the optimized cMERA variational parameter, the local density of disentanglers. Accordingly, using the entanglement entropy production per unit scale, we study local areas in the bulk of the tensor network in terms of the differential entanglement generated along the cMERA flow. This result spurs us to establish an explicit relation between the cMERA variational parameter and the radial component of a dual AdS geometry through the Ryu-Takayanagi formula. Finally, based on recent formulations of non-Gaussian cMERA circuits, we argue that the entanglement entropy for the half space can be written as an integral along the renormalization scale whose measure is given by the Fisher information metric of the cMERA circuit. Consequently, a straightforward relation between AdS geometry and the Fisher information metric is also established.
We investigate the quantum radiation produced by an Unruh-De Witt detector in a uniformly accelerating motion coupled to the vacuum fluctuations. Quantum radiation is nonvanishing, which is consistent with the previous calculation by Lin and Hu [Phys. Rev. D 73, 124018 (2006)]. We infer that this quantum radiation from the Unruh-De Witt detector is generated by the nonlocal correlation of the Minkowski vacuum state, which has its origin in the entanglement of the state between the left and the right Rindler wedges.
In this work we provide a method to study the entanglement entropy for non-Gaussian states that minimize the energy functional of interacting quantum field theories at arbitrary coupling. To this end, we build a class of non-Gaussian variational trial wavefunctionals with the help of exact nonlinear canonical transformations. The calculability emph{bonanza} shown by these variational emph{ansatze} allows us to compute the entanglement entropy using the prescription for the ground state of free theories. In free theories, the entanglement entropy is determined by the two-point correlation functions. For the interacting case, we show that these two-point correlators can be replaced by their nonperturbatively corrected counterparts. Upon giving some general formulae for general interacting models we calculate the entanglement entropy of half space and compact regions for the $phi^4$ scalar field theory in 2D. Finally, we analyze the r^ole played by higher order correlators in our results and show that strong subadditivity is satisfied.
We consider the refinement of the holographic entanglement entropy for the holographic dual theories to the AdS solitons and AdS black holes, including the corrected ones by the Gauss-Bonnet term. The refinement is obtained by extracting the UV-independent piece of the holographic entanglement entropy, the so-called renormalized entanglement entropy which is independent of the choices of UV cutoff. Our main results are (i) the renormalized entanglement entropies of the AdS$_{d+1}$ soliton for $d=4,5$ are neither monotonically decreasing along the RG flow nor positive definite, especially around the deconfinement/confinement phase transition; (ii) there is no topological entanglement entropy for AdS$_5$ soliton even with Gauss-Bonnet correction; (iii) for the AdS black holes, the renormalized entanglement entropy obeys an expected volume law at IR regime, and the transition between UV and IR regimes is a smooth crossover even with Gauss-Bonnet correction; (iv) based on AdS/MERA conjecture, we postulate that the IR fixed-point state for the non-extremal AdS soliton is a trivial product state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا