Do you want to publish a course? Click here

Time dependent modeling of electron acceleration and cooling during blazar flares

98   0   0.0 ( 0 )
 Added by Anton Dmytriiev
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new time-dependent leptonic code that we developed to model the varying multi-wavelength (MWL) emission during blazar flares. In our modeling, we assume that the blazar emission originates from a plasma blob located in the jet, and that relativistic electrons are injected into the blob and may undergo stochastic (Fermi II) or shock (Fermi I) acceleration. We numerically solve the kinetic equation for electron evolution in the blob, taking into account particle injection, escape, acceleration and radiative cooling. In order to calculate the spectral energy distribution (SED) of the blob emission we assume a synchrotron self-Compton (SSC) scenario, including also synchrotron self absorption and gamma-gamma absorption processes. Our code computes the evolution of the electron spectrum and of the associated broad-band SED. As a first application, we attempt to connect the continuous, steady-state emission from the blazar Mrk 421 with a flare observed in February 2010, using a minimal number of free parameters in a two-zone scenario in which a turbulent region is present around the emitting zone. Mrk 421 is a high-synchrotron-peaked (HSP) BL Lac, and one of the brightest extragalactic gamma-ray sources in the Very High Energy (VHE) gamma-ray band. It is also the closest TeV emitting blazar to the Earth (redshift z=0.031).



rate research

Read More

Here we present a new approach for constraining luminous blazars, incorporating fully time-dependent and self-consistent modeling of bright gamma-ray flares of PKS1510-089 resolved with Fermi-LAT, in the framework of the internal shock scenario. The results of our modeling imply the location of the gamma-ray flaring zone outside of the broad-line region, namely around 0.3pc from the core for a free-expanding jet with the opening angle Gamma, theta_mathrm{jet} simeq 1 (where Gamma is the jet bulk Lorentz factor), up to simeq 3pc for a collimated outflow with Gamma, theta_mathrm{jet} simeq 0.1. Moreover, under the Gamma, theta_mathrm{jet} simeq 1 condition, our modeling indicates the maximum efficiency of the jet production during the flares, with the total jet energy flux strongly dominated by protons and exceeding the available accretion power in the source. This is in contrast to the quiescence states of the blazar, characterized by lower jet kinetic power and an approximate energy equipartition between different plasma constituents. We demostrate how strictly simultaneous observations of flaring PKS1510-089 at optical, X-ray, and GeV photon energies on hourly timescales, augmented by extensive simulations as presented in this paper, may help to impose further precise constraints on the magnetization and opening angle of the emitting region. Our detailed modeling implies in addition that a non-uniformity of the Doppler factor across the jet, caused by the radial expansion of the outflow, may lead to a pronounced time distortion in the observed gamma-ray light curves, resulting in particular in asymmetric flux profiles with substantially extended decay phases.
The jets of blazars are renowned for their multi-wavelength flares and rapid extreme variability; however, there are still some important unanswered questions about the physical processes responsible for these spectral and temporal changes in emission properties. In this paper, we develop a time-dependent particle evolution model for the time-varying emission spectrum of blazars. In the model, we introduce time-dependent electric and magnetic fields, which consistently include the variability of relevant physical quantities in the transport equation. The evolution on the electron distribution is numerically solved from a generalized transport equation that contains the terms describing the electrostatic, first-order and second-order emph{Fermi} acceleration, escape of particles due to both advection and spatial diffusion, as well as energy losses due to the synchrotron emission and inverse-Compton scattering of both synchrotron and external ambient photon fields. We find that the light curve profiles of blazars are consistent with the particle spectral evolution resulting from time-dependent electric and magnetic fields, rather than the effects of the acceleration or the cooling processes. The proposed model is able to simultaneously account for the variability of both the energy spectrum and the light curve profile of the BL Lac object Mrk 421 with reasonable assumptions about the physical parameters. The results strongly indicate that the magnetic field evolution in the dissipated region of a blazar jet can account for the variabilities.
239 - Joni Tammi , Peter Duffy 2008
Observations of minute-scale flares in TeV Blazars place constraints on particle acceleration mechanisms in those objects. The implications for a variety of radiation mechanisms have been addressed in the literature; in this paper we compare four different acceleration mechanisms: diffusive shock acceleration, second-order Fermi, shear acceleration and the converter mechanism. When the acceleration timescales and radiative losses are taken into account, we can exclude shear acceleration and the neutron-based converted mechanism as possible acceleration processes in these systems. The first-order Fermi process and the converter mechanism working via SSC photons are still practically instantaneous, however, provided sufficient turbulence is generated on the timescale of seconds. We propose stochastic acceleration as a promising candidate for the energy-dependent time delays in recent gamma-ray flares of Markarian 501.
109 - Haocheng Zhang 2016
We present a newly developed time-dependent three-dimensional multi-zone hadronic blazar emission model. By coupling a Fokker-Planck based lepto-hadronic particle evolution code 3DHad with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic $gamma$-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light crossing time scale, which is largely independent of the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. As a result, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.
We study stochastic acceleration models for the Fermi bubbles. Turbulence is excited just behind the shock front via Kelvin--Helmholtz, Rayleigh--Taylor, or Richtmyer--Meshkov instabilities, and plasma particles are continuously accelerated by the interaction with the turbulence. The turbulence gradually decays as it goes away from the shock fronts. Adopting a phenomenological model for the stochastic acceleration, we explicitly solve the temporal evolution of the particle energy distribution in the turbulence. Our results show that the spatial distribution of high-energy particles is different from those for a steady solution. We also show that the contribution of electrons that escaped from the acceleration regions significantly softens the photon spectrum. The photon spectrum and surface brightness profile are reproduced by our models. If the escape efficiency is very high, the radio flux from the escaped low-energy electrons can be comparable to that of the WMAP haze. We also demonstrate hadronic models with the stochastic acceleration, but they are unlikely in the viewpoint of the energy budget.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا