Do you want to publish a course? Click here

Pump depletion in parametric down-conversion with low pump energies

137   0   0.0 ( 0 )
 Added by Jefferson Fl\\'orez
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the efficient generation of high-gain parametric down-conversion, including pump depletion, with pump powers as low as 100 $mu$W (energies $0.1$~$mu$J/pulse) and conversion efficiencies up to 33%. In our simple configuration, the pump beam is tightly focused into a bulk periodically poled lithium niobate crystal placed in free space. We also observe a change in the photon number statistics for both the pump and down-converted beams as the pump power increases to reach the depleted pump regime. The experimental results are a clear signature of the interplay between the pump and the down-converted beams in highly efficient parametric down-conversion sources.



rate research

Read More

276 - D. Daems , F. Bernard , N. J. Cerf 2010
Most investigations of multipartite entanglement have been concerned with temporal modes of the electromagnetic field, and have neglected its spatial structure. We present a simple model which allows to generate tripartite entanglement between spatial modes by parametric down-conversion with two symmetrically-tilted plane waves serving as a pump. The characteristics of this entanglement are investigated. We also discuss the generalization of our scheme to 2N+1-partite entanglement using 2N symmetrically-tilted plane pump waves. Another interesting feature is the possibility of entanglement localization in just two spatial modes.
The advanced-wave picture is ... an intuitive treatment of two-photon correlation with the help of the concept of an effective field acting upon one of the two detectors and formed by parametric conversion of the advanced wave emitted by the second detector ... [A. V. Belinskii and D. N. Klyshko, JETP 78, 259 (1994)]. This quote from Belinskii and Klyshko nicely describes the concept of the advanced-wave picture; an intuitive tool for designing and predicting results from coincidence-based two-photon experiments. Up to now, the advanced-wave picture has been considered primarily for the case of an ideal plane-wave pump beam and only for design purposes. Here we study the advanced wave picture for a structured pump beam and in the context of stimulated emission provoked by an auxiliary input laser beam. This suggests stimulated parametric down-conversion as a useful experimental tool for testing the experimental sets designed with the advanced-wave picture. We present experimental results demonstrating the strategy of designing the experiment with advanced-wave picture and testing with stimulated emission.
The correlation properties of the pump field in spontaneous parametric down-conversion are crucial in determining the degree of entanglement of generated signal and idler photons. We find theoretically that continuous-variable entanglement of the transverse positions and momenta of these photons can be achieved only if the coherence of the pump beam is sufficiently high. The positions of signal and idler photons are found to be correlated, even for an incoherent pump. However, the momenta of the signal and idler photons are not anti-correlated, even though transverse momentum is conserved.
We investigate the effect of the cumulative phase on the photon statistics of the three-mode state whose evolution is described by the trilinear Hamiltonian $hat{H}_{I}=ihbarkappabig(hat{a}hat{b}hat{c}^{dagger}-hat{a}^{dagger}hat{b}^{dagger}cbig)$, wherein the pump is taken to be quantized (and prepared in a coherent state) and the signal and idler modes are initially seeded with coherent states. We provide a brief review of the two-mode squeezed coherent states generated by non-degenerate coherently-stimulated parametric down-conversion, whereby the nonlinear crystal is driven by a strong classical field. The statistics of the resulting two mode state have been shown to depend greatly on the cumulative phase $Phi=theta_{s}+theta_{i}-2phi$ where $theta_{sleft(iright)}$ are the signal(idler) coherent state phases and $2phi$ is the classical pump phase. Using perturbation theory, we analytically show for short times how the photon statistics and entanglement properties of the resultant state depends strictly on this phase combination. We also present numerical results of the relevant quantities to show the evolution of the three modes and provide a qualitative analysis of the steady state valid for long times.
We present an analytical formulation of the recent one-shot decoupling model of Br`adler and Adami [arXiv:1505.0284] and compute the resulting Page Information curves, for the reduced density matrices for the evaporating black hole internal degrees of freedom, and emitted Hawking radiation pairs entangled across the horizon. We argue that black hole evaporation/particle production has a very close analogy to the laboratory process of spontaneous parametric down conversion, when the pump is allowed to deplete.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا