No Arabic abstract
Purpose Surgical simulations play an increasingly important role in surgeon education and developing algorithms that enable robots to perform surgical subtasks. To model anatomy, Finite Element Method (FEM) simulations have been held as the gold standard for calculating accurate soft-tissue deformation. Unfortunately, their accuracy is highly dependent on the simulation parameters, which can be difficult to obtain. Methods In this work, we investigate how live data acquired during any robotic endoscopic surgical procedure may be used to correct for inaccurate FEM simulation results. Since FEMs are calculated from initial parameters and cannot directly incorporate observations, we propose to add a correction factor that accounts for the discrepancy between simulation and observations. We train a network to predict this correction factor. Results To evaluate our method, we use an open-source da Vinci Surgical System to probe a soft-tissue phantom and replay the interaction in simulation. We train the network to correct for the difference between the predicted mesh position and the measured point cloud. This results in 15-30% improvement in the mean distance, demonstrating the effectiveness of our approach across a large range of simulation parameters. Conclusion We show a first step towards a framework that synergistically combines the benefits of model-based simulation and real-time observations. It corrects discrepancies between simulation and the scene that results from inaccurate modeling parameters. This can provide a more accurate simulation environment for surgeons and better data with which to train algorithms.
Autonomous robotic surgery has the potential to provide efficacy, safety, and consistency independent of individual surgeons skill and experience. Autonomous soft-tissue surgery in unstructured and deformable environments is especially challenging as it necessitates intricate imaging, tissue tracking and surgical planning techniques, as well as a precise execution via highly adaptable control strategies. In the laparoscopic setting, soft-tissue surgery is even more challenging due to the need for high maneuverability and repeatability under motion and vision constraints. We demonstrate the first robotic laparoscopic soft tissue surgery with a level of autonomy of 3 out of 5, which allows the operator to select among autonomously generated surgical plans while the robot executes a wide range of tasks independently. We also demonstrate the first in vivo autonomous robotic laparoscopic surgery via intestinal anastomosis on porcine models. We compared the criteria including needle placement corrections, suture spacing, suture bite size, completion time, lumen patency, and leak pressure between the developed system, manual laparoscopic surgery, and robot-assisted surgery (RAS). The ex vivo results indicate that our system outperforms expert surgeons and RAS techniques in terms of consistency and accuracy, and it leads to a remarkable anastomosis quality in living pigs. These results demonstrate that surgical robots exhibiting high levels of autonomy have the potential to improve consistency, patient outcomes, and access to a standard surgical technique.
Deep Reinforcement Learning (DRL) is a viable solution for automating repetitive surgical subtasks due to its ability to learn complex behaviours in a dynamic environment. This task automation could lead to reduced surgeons cognitive workload, increased precision in critical aspects of the surgery, and fewer patient-related complications. However, current DRL methods do not guarantee any safety criteria as they maximise cumulative rewards without considering the risks associated with the actions performed. Due to this limitation, the application of DRL in the safety-critical paradigm of robot-assisted Minimally Invasive Surgery (MIS) has been constrained. In this work, we introduce a Safe-DRL framework that incorporates safety constraints for the automation of surgical subtasks via DRL training. We validate our approach in a virtual scene that replicates a tissue retraction task commonly occurring in multiple phases of an MIS. Furthermore, to evaluate the safe behaviour of the robotic arms, we formulate a formal verification tool for DRL methods that provides the probability of unsafe configurations. Our results indicate that a formal analysis guarantees safety with high confidence such that the robotic instruments operate within the safe workspace and avoid hazardous interaction with other anatomical structures.
Tactile sensing plays an important role in robotic perception and manipulation. To overcome the real-world limitations of data collection, simulating tactile response in virtual environment comes as a desire direction of robotic research. Most existing works model the tactile sensor as a rigid multi-body, which is incapable of reflecting the elastic property of the tactile sensor as well as characterizing the fine-grained physical interaction between two objects. In this paper, we propose Elastic Interaction of Particles (EIP), a novel framework for tactile emulation. At its core, EIP models the tactile sensor as a group of coordinated particles, and the elastic theory is applied to regulate the deformation of particles during the contact process. The implementation of EIP is conducted from scratch, without resorting to any existing physics engine. Experiments to verify the effectiveness of our method have been carried out on two applications: robotic perception with tactile data and 3D geometric reconstruction by tactile-visual fusion. It is possible to open up a new vein for robotic tactile simulation, and contribute to various downstream robotic tasks.
We present an approach for safe and object-independent human-to-robot handovers using real time robotic vision and manipulation. We aim for general applicability with a generic object detector, a fast grasp selection algorithm and by using a single gripper-mounted RGB-D camera, hence not relying on external sensors. The robot is controlled via visual servoing towards the object of interest. Putting a high emphasis on safety, we use two perception modules: human body part segmentation and hand/finger segmentation. Pixels that are deemed to belong to the human are filtered out from candidate grasp poses, hence ensuring that the robot safely picks the object without colliding with the human partner. The grasp selection and perception modules run concurrently in real-time, which allows monitoring of the progress. In experiments with 13 objects, the robot was able to successfully take the object from the human in 81.9% of the trials.
This paper presents a vision-based sensing approach for a soft linear actuator, which is equipped with an integrated camera. The proposed vision-based sensing pipeline predicts the three-dimensional position of a point of interest on the actuator. To train and evaluate the algorithm, predictions are compared to ground truth data from an external motion capture system. An off-the-shelf distance sensor is integrated in a similar actuator and its performance is used as a baseline for comparison. The resulting sensing pipeline runs at 40 Hz in real-time on a standard laptop and is additionally used for closed loop elongation control of the actuator. It is shown that the approach can achieve comparable accuracy to the distance sensor.