Do you want to publish a course? Click here

A Note on Steins Method for Heavy-Traffic Analysis

89   0   0.0 ( 0 )
 Added by Xingyu Zhou
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this note, we apply Steins method to analyze the steady-state distribution of queueing systems in the traditional heavy-traffic regime. Compared to previous methods (e.g., drift method and transform method), Steins method allows us to establish stronger results with simple and template proofs. In particular, we consider discrete-time systems in this note. We first introduce the key ideas of Steins method for heavy-traffic analysis through a single-server system. Then, we apply the developed template to analyze both load balancing problems and scheduling problems. All these three examples demonstrate the power and flexibility of Steins method in heavy-traffic analysis. In particular, we can see that one appealing property of Steins method is that it combines the advantages of both the drift method and the transform method.



rate research

Read More

75 - Xingyu Zhou , Ness Shroff 2020
In this note, we apply Steins method to analyze the performance of general load balancing schemes in the many-server heavy-traffic regime. In particular, consider a load balancing system of $N$ servers and the distance of arrival rate to the capacity region is given by $N^{1-alpha}$ with $alpha > 1$. We are interested in the performance as $N$ goes to infinity under a large class of policies. We establish different asymptotics under different scalings and conditions. Specifically, (i) If the second moments linearly increase with $N$ with coefficients $sigma_a^2$ and $ u_s^2$, then for any $alpha > 4$, the distribution of the sum queue length scaled by $N^{-alpha}$ converges to an exponential random variable with mean $frac{sigma_a^2 + u_s^2}{2}$. (3) If the second moments quadratically increase with $N$ with coefficients $tilde{sigma}_a^2$ and $tilde{ u}_s^2$, then for any $alpha > 3$, the distribution of the sum queue length scaled by $N^{-alpha-1}$ converges to an exponential random variable with mean $frac{tilde{sigma}_a^2 + tilde{ u}_s^2}{2}$. Both results are simple applications of our previously developed framework of Steins method for heavy-traffic analysis in cite{zhou2020note}.
This paper presents a heavy-traffic analysis of the behavior of a single-server queue under an Earliest-Deadline-First (EDF) scheduling policy in which customers have deadlines and are served only until their deadlines elapse. The performance of the system is measured by the fraction of reneged work (the residual work lost due to elapsed deadlines) which is shown to be minimized by the EDF policy. The evolution of the lead time distribution of customers in queue is described by a measure-valued process. The heavy traffic limit of this (properly scaled) process is shown to be a deterministic function of the limit of the scaled workload process which, in turn, is identified to be a doubly reflected Brownian motion. This paper complements previous work by Doytchinov, Lehoczky and Shreve on the EDF discipline in which customers are served to completion even after their deadlines elapse. The fraction of reneged work in a heavily loaded system and the fraction of late work in the corresponding system without reneging are compared using explicit formulas based on the heavy traffic approximations. The formulas are validated by simulation results.
382 - John Pike , Haining Ren 2012
Using Steins method techniques, we develop a framework which allows one to bound the error terms arising from approximation by the Laplace distribution and apply it to the study of random sums of mean zero random variables. As a corollary, we deduce a Berry-Esseen type theorem for the convergence of certain geometric sums. Our results make use of a second order characterizing equation and a distributional transformation which is related to zero-biasing.
We consider a general preferential attachment model, where the probability that a newly arriving vertex connects to an older vertex is proportional to a sublinear function of the indegree of the older vertex at that time. It is well known that the distribution of a uniformly chosen vertex converges to a limiting distribution. Depending on the parameters, this model can show power law, but also stretched exponential behaviour. Using Steins method we provide rates of convergence for the total variation distance. Our proof uses the fact that the limiting distribution is the stationary distribution of a Markov chain together with the generator method of Barbour.
127 - Xiao Fang , Yuta Koike 2020
We obtain explicit error bounds for the $d$-dimensional normal approximation on hyperrectangles for a random vector that has a Stein kernel, or admits an exchangeable pair coupling, or is a non-linear statistic of independent random variables or a sum of $n$ locally dependent random vectors. We assume the approximating normal distribution has a non-singular covariance matrix. The error bounds vanish even when the dimension $d$ is much larger than the sample size $n$. We prove our main results using the approach of Gotze (1991) in Steins method, together with modifications of an estimate of Anderson, Hall and Titterington (1998) and a smoothing inequality of Bhattacharya and Rao (1976). For sums of $n$ independent and identically distributed isotropic random vectors having a log-concave density, we obtain an error bound that is optimal up to a $log n$ factor. We also discuss an application to multiple Wiener-It^{o} integrals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا